Sextuple Angle Formulas/Cosine

From ProofWiki
Jump to navigation Jump to search

Theorem

$\cos 6 \theta = 32 \cos^6 \theta - 48 \cos^4 \theta + 18 \cos^2 \theta - 1$

where $\cos$ denotes cosine.


Proof

\(\ds \cos 6 \theta + i \sin 6 \theta\) \(=\) \(\ds \paren {\cos \theta + i \sin \theta}^6\) De Moivre's Formula
\(\ds \) \(=\) \(\ds \paren {\cos \theta}^6 + \binom 6 1 \paren {\cos \theta}^5 \paren {i \sin \theta} + \binom 6 2 \paren {\cos \theta}^4 \paren {i \sin \theta}^2\) Binomial Theorem
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \binom 6 3 \paren {\cos \theta}^3 \paren {i \sin \theta}^3 + \binom 6 4 \paren {\cos \theta}^2 \paren {i \sin \theta}^4 + \binom 6 5 \paren {\cos \theta} \paren {i \sin \theta}^5 + \paren {i \sin \theta}^6\)
\(\ds \) \(=\) \(\ds \cos^6 \theta + 6 i \cos^5 \theta \sin \theta - 15 \cos^4 \sin^2 \theta\) substituting for binomial coefficients
\(\ds \) \(\) \(\, \ds - \, \) \(\ds 20 i \cos^3 \theta \sin^3 \theta + 15 \cos^2 \theta \sin^4 \theta + 6 i \cos \theta \sin^5 \theta - \sin^6 \theta\) and using $i^2 = -1$
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds \cos^6 \theta - 15 \cos^4 \sin^2 \theta + 15 \cos^2 \theta \sin^4 \theta - \sin^6 \theta\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds i \paren {6 \cos^5 \theta \sin \theta - 20 \cos^3 \theta \sin^3 \theta + 6 \cos \theta \sin^5 \theta}\) rearranging


Hence:

\(\ds \cos 6 \theta\) \(=\) \(\ds \cos^6 \theta - 15 \cos^4 \sin^2 \theta + 15 \cos^2 \theta \sin^4 \theta - \sin^6 \theta\) equating real parts in $(1)$
\(\ds \) \(=\) \(\ds \cos^6 \theta - 15 \cos^4 \paren {1 - \cos^2 \theta} + 15 \cos^2 \theta \paren {1 - \cos^2 \theta}^2 \theta - \paren {1 - \cos^2 \theta}^3\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds 32 \cos^6 \theta - 48 \cos^4 \theta + 18 \cos^2 \theta - 1\) multiplying out and gathering terms

$\blacksquare$


Sources