Short Exact Sequence Condition of Noetherian Modules

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A$ be a commutative ring with unity.

Let:

$0 \longrightarrow M' \stackrel {\alpha} {\longrightarrow} M \stackrel {\beta} {\longrightarrow} M \longrightarrow 0$

be a short exact sequence of $A$-modules.


Then:

$M$ is Noetherian

if and only if:

$M'$ and $M$ are Noetherian

Proof

Necessary condition

Assume $M$ is Noetherian.

$M'$ is Noetherian

Let $N'\subseteq M'$ be a submodule.

Then, $\alpha \sqbrk {N'}\subseteq M$ is a submodule by Image of Linear Transformation is Submodule.

As $M$ is Noetherian, $\alpha \sqbrk {N'}$ has a finite generator:

$\set {\map\alpha {n'_1}, \ldots , \map\alpha {n' _n}}$


We claim $\set {n' _1,\ldots n'_n}$ is a generator of $N'$.

Indeed, let $x'\in M'$.

Then, there are $a_1,\ldots, a_n\in A$ such that:

\(\ds \map\alpha {x'}\) \(=\) \(\ds a_1\map\alpha {n'_1} + \cdots + a_n \map\alpha {n' _n}\)
\(\ds \) \(=\) \(\ds \map\alpha {a_1 n'_1 + \cdots + a_n n' _n}\) Definition:Linear Transformation

As $\map\ker\alpha = 0$:

$x' = a_1 n'_1 + \cdots + a_n n' _n$

$\Box$

$M$ is Noetherian

Let $N\subseteq M$ be a submodule.

Then, $\beta ^{-1} \sqbrk {N}\subseteq M$ is a submodule by Preimage of Submodule under Linear Transformation is Submodule.

As $M$ is Noetherian, $\beta ^{-1} \sqbrk {N}$ has a finite generator:

$\set {m_1, \ldots , m_k}$


We claim $\set {\map\beta {m_1},\ldots , \map\beta {m_k}}$ is a generator of $N$.

Indeed, let $x\in N$.

As $\image\beta = M$, thee is a $x\in M$ such that:

$\map\beta x = x$

Since $x\in\beta ^{-1} \sqbrk {N}$, there are $b_1,\ldots, b_k\in A$ such that:

$x = b_1 m_1 + \cdots + b_k m_k$

Therefore:

\(\ds x\) \(=\) \(\ds \map\beta x\)
\(\ds \) \(=\) \(\ds \map\beta {b_1 m_1 + \cdots + b_k m_k}\)
\(\ds \) \(=\) \(\ds b_1 \map\beta {m_1} + \cdots + b_k \map\beta {m_k}\) Definition:Linear Transformation

$\Box$

Sufficient condition

Let $M'$ and $M$ be Noetherian.

Let $N\subseteq M$ be a submodule.

Then, $\alpha ^{-1} \sqbrk N \subseteq M'$ is a submodule by Preimage of Submodule under Linear Transformation is Submodule.

As $M'$ is Noetherian, $\alpha ^{-1} \sqbrk N$ has a finite generator:

$\set {m'_1, \ldots , m'_k}$

Furthermore, $\beta \sqbrk N \subseteq M$ is a submodule by Image of Linear Transformation is Submodule.

As $M$ is Noetherian, $\beta \sqbrk N$ has a finite generator:

$\set {\map\beta {m_1}, \ldots , \map\beta {m_l}}$


We claim $\set {\map\alpha {m'_1},\ldots \map\beta {m'_k}, m_1, \ldots , m_l}$ is a generator of $N$.

Indeed, let $x\in N$.

As $\map\beta x \in \beta \sqbrk N$, there exist $b_1,\ldots, b_l\in A$ such that:

$\map\beta x = b_1\map\beta {m_1} + \cdots + b_l \map\beta {m_l}$

Therefore:

\(\ds \map\beta {x - \paren { b_1 m_1 + \cdots + b_l m_l } }\) \(=\) \(\ds \map\beta x - \paren { b_1\map\beta {m_1} + \cdots + b_l \map\beta {m_l} }\) Definition:Linear Transformation
\(\ds \) \(=\) \(\ds \map\beta x - \map\beta x\)
\(\ds \) \(=\) \(\ds 0\)

that implies:

$x - \paren { b_1 m_1 + \cdots + b_l m_l } \in \map\ker\beta = \image\alpha$

Thus, there is a $x'\in\alpha ^{-1} \sqbrk N$ such that:

$\map\alpha {x'} = x - \paren { b_1 m_1 + \cdots + b_l m_l }$

On the other hand, there are $a_1,\ldots,a_k\in A$ such that:

$x' = a_1 m'_1 + \cdots + a_k m'_k$

Therefore:

\(\ds x\) \(=\) \(\ds \map\alpha {x'} + b_1 m_1 + \cdots + b_l m_l\)
\(\ds \) \(=\) \(\ds \map\alpha {a_1 m'_1 + \cdots + a_k m'_k} + b_1 m_1 + \cdots + b_l m_l\)
\(\ds \) \(=\) \(\ds a_1 \map\alpha {m'_1} + \cdots + a_k \map\alpha {m'_k} + b_1 m_1 + \cdots + b_l m_l\) Definition:Linear Transformation

$\blacksquare$