Simultaneous Linear Equations have Solution iff Ranks of Matrix of Coefficients and Augmented Matrix are Equal

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a system of simultaneous linear equations:

$\ds \forall i \in \set {1, 2, \ldots, m} : \sum_{j \mathop = 1}^n \alpha_{i j} x_j = \beta_i$

Let $S$ be expressed in matrix form as:

$\mathbf {A x} = \mathbf b$

where:

$\mathbf A = \begin {pmatrix}

\alpha_{1 1} & \alpha_{1 2} & \cdots & \alpha_{1 n} \\ \alpha_{2 1} & \alpha_{2 2} & \cdots & \alpha_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m 1} & \alpha_{m 2} & \cdots & \alpha_{m n} \\ \end {pmatrix}$, $\mathbf x = \begin {pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$, $\mathbf b = \begin {pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end {pmatrix}$


Then $S$ has at least one solution if and only if:

$\map \rho {\mathbf A} = \map \rho {\begin {array} {c|c} \mathbf A & \mathbf b \end {array} }$

where:

$\map \rho {\mathbf A}$ denotes the rank of $\mathbf A$
$\paren {\begin {array} {c|c} \mathbf A & \mathbf b \end {array} }$ denotes the augmented matrix of $S$.


Proof




Sources