Sine of Integer Multiple of Argument/Formulation 8

From ProofWiki
Jump to navigation Jump to search

Theorem

For $n \in \Z_{>1}$:


$\sin n \theta = \map \sin {\paren {n - 1 } \theta} \paren { a_0 - \cfrac 1 {a_1 - \cfrac 1 {a_2 - \cfrac 1 {\ddots \cfrac {} {a_{n-3} - \cfrac 1 {a_{n-2}}} }}} }$

where $a_0 = a_1 = a_2 = \ldots = a_{n-2} = 2 \cos \theta$.


Proof

From Sine of Integer Multiple of Argument Formulation 4 we have:

\(\ds \map \sin {n \theta}\) \(=\) \(\ds \paren {2 \cos \theta } \map \sin {\paren {n - 1 } \theta} - \map \sin {\paren {n - 2 } \theta}\)
\(\ds \) \(=\) \(\ds \map \sin {\paren {n - 1 } \theta} \paren {\paren {2 \cos \theta } - \dfrac {\map \sin {\paren {n - 2 } \theta} } {\map \sin {\paren {n - 1 } \theta} } }\) factoring out $\map \sin {\paren {n - 1 } \theta}$

Therefore $a_0 = 2 \cos \theta$


Once again, from Sine of Integer Multiple of Argument Formulation 4 we have:

\(\ds \dfrac {\map \sin {n \theta} } {\map \sin {\paren {n - 1 } \theta} }\) \(=\) \(\ds 2 \cos \theta - \dfrac {\map \sin {\paren {n - 2 } \theta} } {\map \sin {\paren {n - 1 } \theta} }\) dividing both sides by $\map \sin {\paren {n - 1 } \theta}$
\(\ds \) \(=\) \(\ds 2 \cos \theta - \cfrac 1 {\cfrac {\map \sin {\paren {n - 1 } \theta} } {\map \sin {\paren {n - 2 } \theta} } }\) Move the numerator to the denominator


In the equations above, let $n = n - k$:

\(\ds \dfrac {\map \sin {\paren {n - k } \theta} } {\map \sin {\paren {n - k - 1 } \theta} }\) \(=\) \(\ds 2 \cos \theta - \cfrac 1 {\cfrac {\map \sin {\paren {n - k - 1 } \theta} } {\map \sin {\paren {n - k - 2 } \theta} } }\)
\(\ds \dfrac {\map \sin {\paren {n - k } \theta} } {\map \sin {\paren {n - \paren {k + 1} } \theta} }\) \(=\) \(\ds 2 \cos \theta - \cfrac 1 {\cfrac {\map \sin {\paren {n - \paren {k + 1 } } \theta} } {\map \sin {\paren {n - \paren {k + 2 } } \theta} } }\)


Therefore $a_1 = a_2 = \cdots = a_{n-3} = 2 \cos \theta$


Finally, let $k = n - 3$, then:

\(\ds \dfrac {\map \sin {3 \theta} } {\map \sin {2 \theta } }\) \(=\) \(\ds 2 \cos \theta - \cfrac 1 {\cfrac {\map \sin {2 \theta} } {\map \sin {\theta} } }\)
\(\ds \) \(=\) \(\ds 2 \cos \theta - \cfrac 1 {\cfrac {2 \map \sin {\theta} \map \cos {\theta} } {\map \sin {\theta} } }\) Double Angle Formula for Sine
\(\ds \) \(=\) \(\ds 2 \cos \theta - \dfrac 1 {2 \map \cos \theta }\)


Therefore $a_{n - 2} = 2 \cos \theta$


Therefore: For $n \in \Z_{>1}$:

$\sin n \theta = \map \sin {\paren {n - 1 } \theta} \paren { a_0 - \cfrac 1 {a_1 - \cfrac 1 {a_2 - \cfrac 1 {\ddots \cfrac {} {a_{n-3} - \cfrac 1 {a_{n-2}}} }}} }$

where $a_0 = a_1 = a_2 = \ldots = a_{n-2} = 2 \cos \theta$.

$\blacksquare$

Examples

Sine of Quintuple Angle

$\map \sin {5 \theta } = \map \sin {4 \theta} \paren { 2 \cos \theta - \cfrac 1 {2 \cos \theta - \cfrac 1 {2\cos \theta - \cfrac 1 {2 \cos \theta } } } }$


Sine of Sextuple Angle

$\map \sin {6 \theta } = \map \sin {5 \theta} \paren { 2 \cos \theta - \cfrac 1 {2 \cos \theta - \cfrac 1 {2\cos \theta - \cfrac 1 {2\cos \theta - \cfrac 1 {2 \cos \theta} } } } }$