Sine of Multiple of Pi by 2 plus i by Natural Logarithm of Golden Mean/Proof 2
Jump to navigation
Jump to search
Theorem
Let $z = \dfrac \pi 2 + i \ln \phi$.
Then:
- $\dfrac {\sin n z} {\sin z} = i^{1 - n} F_n$
where:
- $\phi$ denotes the golden mean
- $F_n$ denotes the $n$th Fibonacci number.
Proof
\(\ds \cos z\) | \(=\) | \(\ds \cos \left({\dfrac {\pi} 2 + i \ln \phi}\right)\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{i \left({\left({\pi / 2}\right) + i \ln \phi}\right)} + e^{-i \left({\left({\pi / 2}\right) + i \ln \phi}\right)} } 2\) | Cosine Exponential Formulation | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{i \pi / 2} e^{-\ln \phi} + e^{-i \pi / 2} e^{\ln \phi} } 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{-\ln \phi} \left({\cos \frac \pi 2 + i \sin \frac \pi 2}\right) + e^{\ln \phi} \left({\cos \left({-\frac \pi 2}\right) + i \sin \left({-\frac \pi 2}\right)}\right)} 2\) | Euler's Formula and Corollary | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{-\ln \phi} \left({i \sin \frac \pi 2}\right) + e^{\ln \phi} \left({i \sin \left({-\frac \pi 2}\right)}\right)} 2\) | Cosine of Half-Integer Multiple of Pi | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {i e^{-\ln \phi} - i e^{\ln \phi} } 2\) | Sine of Half-Integer Multiple of Pi and simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds -i \frac {\phi - \frac 1 {\phi} } 2\) | Exponential of Natural Logarithm | |||||||||||
\(\ds \) | \(=\) | \(\ds -i \frac {\phi^2 - 1} {2 \phi}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -i \frac {\phi} {2 \phi}\) | Square of Golden Mean equals One plus Golden Mean | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {-i} 2\) |
Then:
\(\ds \sin \left({n + 1}\right) z + \sin \left({n - 1}\right) z\) | \(=\) | \(\ds 2 \sin n z \cos z\) | Simpson's Formula for Sine by Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds -i \sin n z\) |
![]() | This needs considerable tedious hard slog to complete it. In particular: Where to from here? To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Finish}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.8$: Fibonacci Numbers: Exercise $33$: Solution