Skewness of Gamma Distribution

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X \sim \map \Gamma {\alpha, \beta}$ for some $\alpha, \beta > 0$, where $\Gamma$ is the Gamma distribution.

Then the skewness $\gamma_1$ of $X$ is given by:

$\gamma_1 = \dfrac 2 {\sqrt \alpha}$


Proof 1

From Skewness in terms of Non-Central Moments, we have:

$\gamma_1 = \dfrac {\expect {X^3} - 3 \mu \sigma^2 - \mu^3} {\sigma^3}$

where:

$\mu$ is the expectation of $X$.
$\sigma$ is the standard deviation of $X$.

By Expectation of Gamma Distribution, we have:

$\mu = \dfrac \alpha \beta$

By Variance of Gamma Distribution, we have:

$\sigma = \dfrac {\sqrt \alpha} \beta$


To calculate $\gamma_1$, we must calculate $\expect {X^3}$.

From Moment in terms of Moment Generating Function:

$\expect {X^n} = \map { {M_X}^{\paren n} } 0$

where $M_X$ is the moment generating function of $X$.


From Moment Generating Function of Gamma Distribution: Third Moment:

$\map { {M_X}} t = \dfrac {\beta^\alpha \alpha \paren {\alpha + 1} \paren {\alpha + 2} } {\paren {\beta - t}^{\alpha + 3} }$


Setting $t = 0$:

\(\ds \expect {X^3}\) \(=\) \(\ds \dfrac {\beta^\alpha \alpha \paren {\alpha + 1} \paren {\alpha + 2} } {\paren {\beta - 0}^{\alpha + 3} }\)
\(\ds \) \(=\) \(\ds \dfrac {\alpha \paren {\alpha + 1} \paren {\alpha + 2} } {\beta^3}\)

So:

\(\ds \gamma_1\) \(=\) \(\ds \frac {\expect {X^3} - 3 \paren {\dfrac \alpha \beta} \paren {\dfrac \alpha {\beta^2} } - \paren {\dfrac \alpha \beta}^3} {\paren {\dfrac {\alpha \sqrt \alpha} {\beta^3} } }\)
\(\ds \) \(=\) \(\ds \frac {\dfrac {\alpha \paren {\alpha + 1} \paren {\alpha + 2} } {\beta^3} - 3 \paren {\dfrac \alpha \beta} \paren {\dfrac \alpha {\beta^2} } - \paren {\dfrac \alpha \beta}^3} {\paren {\dfrac {\alpha \sqrt \alpha} {\beta^3} } }\)
\(\ds \) \(=\) \(\ds \frac {\alpha^3 + 3 \alpha^2 + 2 \alpha - 3 \alpha^2 - \alpha^3} {\paren {\alpha \sqrt \alpha } }\) $\beta^3$ cancels
\(\ds \) \(=\) \(\ds \dfrac 2 {\sqrt \alpha}\)

$\blacksquare$


Proof 2

From Expectation of Power of Gamma Distribution‎, we have:

$\expect {X^n} = \dfrac {\alpha^{\overline n} } {\beta^n}$

where $\alpha^{\overline n}$ denotes the $n$th rising factorial of $\alpha$.


Hence:

\(\ds \gamma_1\) \(=\) \(\ds \expect {\paren {\dfrac {X - \mu} \sigma}^3}\) Definition of Skewness
\(\ds \) \(=\) \(\ds \frac {\expect {X^3 - 3 X^2 \mu + 3 X \mu^2 - \mu^3} } {\sigma^3}\) Cube of Difference
\(\ds \) \(=\) \(\ds \frac {\expect {X^3} - 3 \mu \expect {X^2} + 3 \mu^2 \expect X - \mu^3} {\sigma^3}\) Expectation is Linear
\(\ds \) \(=\) \(\ds \frac {\expect {X^3} - 3 \expect X \expect {X^2} + 3 \paren {\expect X}^3 - \paren {\expect X}^3} {\paren {\sqrt {\var X} }^3}\) Definition of $\mu$ and $\sigma$
\(\ds \) \(=\) \(\ds \paren {\expect {X^3} - 3 \expect X \expect {X^2} + 2 \paren {\expect X}^3} \paren {\sqrt {\dfrac {\beta^2} \alpha} }^3\) simplification, Variance of Gamma Distribution
\(\ds \) \(=\) \(\ds \dfrac {\alpha^{\overline 3} } {\beta^3} - 3 \dfrac {\alpha^{\overline 1} } {\beta^1} \dfrac {\alpha^{\overline 2} } {\beta^2} + 2 \paren {\dfrac {\alpha^{\overline 1} } {\beta^1} }^3 \dfrac {\beta^3} {\alpha \sqrt \alpha}\) Expectation of Power of Gamma Distribution‎
\(\ds \) \(=\) \(\ds \paren {\dfrac {\alpha \paren {\alpha + 1} \paren {\alpha + 2} } {\beta^3} - 3 \dfrac {\alpha} \beta \dfrac {\alpha \paren {\alpha + 1} } {\beta^2} + 2 \paren {\dfrac \alpha \beta}^3} \dfrac {\beta^3} {\alpha \sqrt \alpha}\) Definition of Rising Factorial
\(\ds \) \(=\) \(\ds \dfrac {\alpha^3 + 3 \alpha^2 + 2 \alpha - 3 \alpha^3 - 3 \alpha^2 + 2 \alpha^3} {\beta^3} \dfrac {\beta^3} {\alpha \sqrt \alpha}\) multiplying out
\(\ds \) \(=\) \(\ds \dfrac 2 {\sqrt \alpha}\) simplification

$\blacksquare$