Smallest Scalene Obtuse Triangle with Integer Sides and Area

From ProofWiki
Jump to navigation Jump to search

Theorem

The smallest scalene obtuse triangle with integer sides and area has sides of length $4, 13, 15$.


Proof

From Heron's Formula, the area $A$ of $\triangle ABC$ is given by:

$A = \sqrt {s \paren {s - a} \paren {s - b} \paren {s - c} }$

where $s = \dfrac {a + b + c} 2$ is the semiperimeter of $\triangle ABC$.

Here we have:

\(\ds s\) \(=\) \(\ds \dfrac {4 + 13 + 15} 2\)
\(\ds \) \(=\) \(\ds 16\)


Thus:

\(\ds A\) \(=\) \(\ds \sqrt {16 \paren {16 - 4} \paren {16 - 13} \paren {16 - 15} }\)
\(\ds \) \(=\) \(\ds \sqrt {16 \times 12 \times 3 \times 1}\)
\(\ds \) \(=\) \(\ds \sqrt {2^4 \times 2^2 \times 3 \times 3 \times 1}\)
\(\ds \) \(=\) \(\ds \sqrt {2^6 \times 3^2}\)
\(\ds \) \(=\) \(\ds 2^3 \times 3\)
\(\ds \) \(=\) \(\ds 24\)



Sources