Solutions of Polynomial Congruences
Jump to navigation
Jump to search
Theorem
Let $\map P x$ be an integral polynomial.
Let $a \equiv b \pmod n$.
Then:
- $\map P a \equiv \map P b \pmod n$
In particular, $a$ is a solution to the polynomial congruence $\map P x \equiv 0 \pmod n$ if and only if $b$ is also.
Proof
Let $\map P x = c_m x^m + c_{m - 1} x^{m - 1} + \cdots + c_1 x + c_0$.
Since $a \equiv b \pmod n$, from Congruence of Product and Congruence of Powers, we have:
- $\forall r \in \Z_{>0}: c_r a^r \equiv c_r b^r \pmod n$
From Modulo Addition we then have:
\(\ds \map P a\) | \(=\) | \(\ds c_m a^m + c_{m - 1} a^{m - 1} + \cdots + c_1 a + c_0\) | ||||||||||||
\(\ds \) | \(\equiv\) | \(\ds c_m b^m + c_{m - 1} b^{m - 1} + \cdots + c_1 b + c_0\) | \(\ds \pmod n\) | |||||||||||
\(\ds \) | \(\equiv\) | \(\ds \map P b\) | \(\ds \pmod n\) |
In particular:
- $\map P a \equiv 0 \iff \map P b \equiv 0 \pmod n$
That is, $a$ is a solution to the polynomial congruence $\map P x \equiv 0 \pmod n$ if and only if $b$ is also.
$\blacksquare$