Stabilizer of Subgroup Action on Left Coset Space
Jump to navigation
Jump to search
Theorem
Let $G$ be a group.
Let $H$ and $K$ be subgroups of $G$.
Let $K$ act on the left coset space $G / H^l$ by:
- $\forall \tuple {k, g H} \in K \times G / H^l: k * g H := \paren {k g} H$
The stabilizer of $g H$ is $K \cap H^g$, where $H^g$ denotes the $G$-conjugate of $H$ by $g$.
Proof
\(\ds \Stab {g H}\) | \(=\) | \(\ds \set {k \in K: \paren {k g} H = g H}\) | Definition of Stabilizer | |||||||||||
\(\ds \) | \(=\) | \(\ds \set {k \in K: g^{-1} \paren {k g} \in H}\) | Left Cosets are Equal iff Product with Inverse in Subgroup | |||||||||||
\(\ds \) | \(=\) | \(\ds \set {k \in K: k \in g H g^{-1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds K \cap H^g\) | Definition of Conjugate of Set |
$\blacksquare$
Sources
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $2$: The Sylow Theorems: $\S 54 \gamma$