Steiner's Calculus Problem
Jump to navigation
Jump to search
Theorem
Let $f: \R_{>0} \to \R$ be the real function defined as:
- $\forall x \in \R_{>0}: \map f x = x^{1/x}$
Then $\map f x$ reaches its maximum at $x = e$ where $e$ is Euler's number .
Proof
\(\ds \map {f'} x\) | \(=\) | \(\ds \frac \d {\d x} x^{1/x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac \d {\d x} e^{\ln x / x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds e^{\ln x / x} \paren {\frac 1 {x^2} - \frac {\ln x} {x^2} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^{1/x} } {x^2} \paren {1 - \ln x}\) |
$\dfrac {x^{1/x} } {x^2}$ is always greater than $0$.
Therefore:
- $\map {f'} x > 0$ for $\ln x < 1$
- $\map {f'} x = 0$ for $\ln x = 1$
- $\map {f'} x < 0$ for $\ln x > 1$
By Derivative at Maximum or Minimum, maximum is obtained when $\ln x = 1$,
that is, when $x = e$.
$\blacksquare$
Source of Name
This entry was named for Jakob Steiner.
Sources
- 1850: Jakob Steiner: Über das größte Product der Theile oder Summanden jeder Zahl (J. reine angew. Math. Vol. 40: p. 208)
- 1965: Heinrich Dörrie: 100 Great Problems of Elementary Mathematics
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $1 \cdotp 444 \, 667 \, 861 \ldots$
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $1 \cdotp 44466 \, 7861 \ldots$