Stirling's Formula/Proof 2/Lemma 3

From ProofWiki
Jump to navigation Jump to search

Lemma

Let $\sequence {d_n}$ be the sequence defined as:

$d_n = \map \ln {n!} - \paren {n + \dfrac 1 2} \ln n + n$

Then the sequence:

$\sequence {d_n - \dfrac 1 {12 n} }$

is increasing.


Proof

We have:

\(\ds d_n - d_{n + 1}\) \(=\) \(\ds \map \ln {n!} - \paren {n + \frac 1 2} \ln n + n\)
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \paren {\map \ln {\paren {n + 1}!} - \paren {n + 1 + \frac 1 2} \map \ln {n + 1} + n + 1}\)
\(\ds \) \(=\) \(\ds -\map \ln {n + 1} - \paren {n + \frac 1 2} \ln n + \paren {n + \frac 3 2} \map \ln {n + 1} - 1\) (as $\map \ln {\paren {n + 1}!} = \map \ln {n + 1} + \map \ln {n!}$)
\(\ds \) \(=\) \(\ds \paren {n + \frac 1 2} \map \ln {\frac {n + 1} n} - 1\)
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds \frac {2n + 1} 2 \map \ln {\frac {1 + \paren {2 n + 1}^{-1} } {1 - \paren {2 n + 1}^{-1} } } - 1\)


Let:

$\map f x := \dfrac 1 {2 x} \map \ln {\dfrac {1 + x} {1 - x} } - 1$

for $\size x < 1$.


Then:

\(\ds \map f x\) \(=\) \(\ds \sum_{k \mathop = 1}^\infty \frac {x^{2 n} } {2 n + 1}\) Lemma 1
\(\ds \) \(<\) \(\ds \frac {x^2} 3 \sum_{k \mathop = 0}^\infty x^{2 n}\)
\(\text {(1)}: \quad\) \(\ds \) \(<\) \(\ds \frac {x^2} {3 \paren {1 - x^2} }\) Sum of Infinite Geometric Sequence


As $-1 < \dfrac 1 {2 n + 1} < 1$ it can be substituted for $x$ in $(1)$:

\(\ds d_n - d_{n - 1}\) \(\le\) \(\ds \frac 1 {3 \paren {\paren {2 n + 1}^2 - 1} }\) simplifying
\(\ds \) \(=\) \(\ds \frac 1 {12 n} - \frac 1 {12 \paren {n + 1} }\)
\(\ds \leadsto \ \ \) \(\ds d_n - \frac 1 {12 n}\) \(\le\) \(\ds d_{n-1} - \frac 1 {12 \paren {n + 1} }\)


Thus the sequence:

$\sequence {d_n - \dfrac 1 {12 n} }$

is increasing.

$\blacksquare$


Sources