Submodule Test

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, +_R, \times_R}$ be a ring with unity $1_R$.

Let $\struct {G, +, \circ}_R$ be a unitary $R$-module.

Let $H$ be a non-empty subset of $G$.


Then $\struct {H, +, \circ}_R$ is a submodule of $G$ if and only if:

\(\text {(SM1)}: \quad\) \(\ds \forall x, y \in H: \, \) \(\ds x + y\) \(\in\) \(\ds H\)
\(\text {(SM2)}: \quad\) \(\ds \forall x \in H: \forall \lambda \in R: \, \) \(\ds \lambda \circ x\) \(\in\) \(\ds H\)


Proof

Necessary Condition

Let $\struct {H, +, \circ}_R$ fulfil the conditions $\text {SM} 1$ and $\text {SM} 2$.

We have by hypothesis that $H \subseteq G$ such that $H \ne \O$.

We have from $\text {SM} 1$:

$\forall x, y \in H: x + y \in H$


We have by hypothesis that $\struct {R, +_R, \times_R}$ is a ring with unity whose unity is $1_R$.

Hence:

\(\ds x\) \(\in\) \(\ds H\)
\(\ds \leadsto \ \ \) \(\ds \paren {-1_R} \circ x\) \(\in\) \(\ds H\) from $\text {SM} 2$
\(\ds \leadsto \ \ \) \(\ds -x\) \(\in\) \(\ds H\) Definition of Unity of Ring

It follows from the Two-Step Subgroup Test that $H$ is a subgroup of $\struct {G, +}$.


It remains to be shown that $\struct {H, +, \circ}_R$ fulfils the module axioms as follows:

\((\text M 1)\)   $:$   Scalar Multiplication (Left) Distributes over Module Addition      \(\ds \forall \lambda \in R: \forall x, y \in H:\)    \(\ds \lambda \circ \paren {x + y} \)   \(\ds = \)   \(\ds \paren {\lambda \circ x} + \paren {\lambda \circ y} \)      
\((\text M 2)\)   $:$   Scalar Multiplication (Right) Distributes over Scalar Addition      \(\ds \forall \lambda, \mu \in R: \forall x \in H:\)    \(\ds \paren {\lambda +_R \mu} \circ x \)   \(\ds = \)   \(\ds \paren {\lambda \circ x} + \paren {\mu \circ x} \)      
\((\text M 3)\)   $:$   Associativity of Scalar Multiplication      \(\ds \forall \lambda, \mu \in R: \forall x \in H:\)    \(\ds \paren {\lambda \times_R \mu} \circ x \)   \(\ds = \)   \(\ds \lambda \circ \paren {\mu \circ x} \)      


Module Axiom $\text M 1$
Distributivity over Module Addition
\(\ds \forall x, y \in H: \, \) \(\ds x + y\) \(\in\) \(\ds H\) from $\text {SM} 1$
\(\ds \lambda \circ x\) \(\in\) \(\ds H\) from $\text {SM} 2$
\(\ds \lambda \circ y\) \(\in\) \(\ds H\) from $\text {SM} 2$
\(\ds \leadsto \ \ \) \(\ds \paren {\lambda \circ x} + \paren {\lambda \circ y}\) \(\in\) \(\ds H\) from $\text {SM} 1$
\(\ds \leadsto \ \ \) \(\ds \paren {\lambda \circ x} + \paren {\lambda \circ y}\) \(\in\) \(\ds G\) as $H \subseteq G$
\(\ds \leadsto \ \ \) \(\ds \paren {\lambda \circ x} + \paren {\lambda \circ y}\) \(=\) \(\ds \lambda \circ \paren {x + y}\) Module Axiom $\text M 1$: Distributivity over Module Addition as applied to $\struct {G, +, \circ}_R$

Hence $\struct {H, +, \circ}_R$ fulfils Module Axiom $\text M 1$: Distributivity over Module Addition.


Module Axiom $\text M 2$
Distributivity over Scalar Addition
\(\ds \forall x \in H: \forall \lambda \in R: \, \) \(\ds \lambda \circ x\) \(\in\) \(\ds H\) from $\text {SM} 2$
\(\ds \leadsto \ \ \) \(\ds \forall \mu \in R: \, \) \(\ds \paren {\lambda +_R \mu} \circ x\) \(\in\) \(\ds H\) from $\text {SM} 2$: as $\lambda +_R \mu \in R$
\(\ds \leadsto \ \ \) \(\ds \paren {\lambda +_R \mu} \circ x\) \(\in\) \(\ds G\) as $H \subseteq G$
\(\ds \leadsto \ \ \) \(\ds \paren {\lambda +_R \mu} \circ x\) \(=\) \(\ds \paren {\lambda \circ x} + \paren {\mu \circ x}\) Module Axiom $\text M 2$: Distributivity over Scalar Addition as applied to $\struct {G, +, \circ}_R$

Hence $\struct {H, +, \circ}_R$ fulfils Module Axiom $\text M 2$: Distributivity over Scalar Addition.


Module Axiom $\text M 3$
Associativity
\(\ds \forall x \in H: \forall \lambda \in R: \, \) \(\ds \lambda \circ x\) \(\in\) \(\ds H\) from $\text {SM} 2$
\(\ds \leadsto \ \ \) \(\ds \forall \mu \in R: \, \) \(\ds \paren {\lambda \times_R \mu} \circ x\) \(\in\) \(\ds H\) from $\text {SM} 2$: as $\lambda \times_R \mu \in R$
\(\ds \leadsto \ \ \) \(\ds \paren {\lambda \times_R \mu} \circ x\) \(\in\) \(\ds G\) as $H \subseteq G$
\(\ds \leadsto \ \ \) \(\ds \paren {\lambda \times_R \mu} \circ x\) \(=\) \(\ds \lambda \circ \paren {\mu \circ x}\) Module Axiom $\text M 3$: Associativity as applied to $\struct {G, +, \circ}_R$

Hence $\struct {H, +, \circ}_R$ fulfils Module Axiom $\text M 3$: Associativity.


Sufficient Condition

Let $\struct {H, +, \circ}_R$ be a submodule of $G$.

As $H$ is an $R$-module, $\struct {H, +}$ is an abelian group.

As $\struct {H, +}$ is a group, it is closed under $+$ it follows that

$\forall x, y \in H: x + y \in H$

which is $\text {SM} 1$.

As $H$ is an $R$-module, it is closed for scalar product:

$\forall \lambda \in R, x \in H: \lambda \circ x \in H$

which is $\text {SM} 2$.

$\blacksquare$


Sources