Subring Module is Module
Theorem
Let $\struct {R, +, \times}$ be a ring.
Let $\struct {S, +_S, \times_S}$ be a subring of $R$.
Let $\struct {G, +_G, \circ}_R$ be an $R$-module.
Let $\circ_S$ be the restriction of $\circ$ to $S \times G$.
Let $\struct {G, +_G, \circ_S}_S$ be subring module induced by $S$.
Then $\struct {G, +_G, \circ_S}_S$ is an $S$-module.
Unitary Subring
Let $\struct {R, +, \times}$ be a ring with unity.
Let $\struct {G, +_G, \circ}_R$ be a unitary $R$-module.
Let $1_R \in S$.
Then $\struct{G, +_G, \circ_S}_S$ is also unitary.
Special Case
Let $S$ be a subring of the ring $\struct {R, +, \circ}$.
Let $\circ_S$ be the restriction of $\circ$ to $S \times R$.
Then $\struct {R, +, \circ_S}_S$ is an $S$-module.
Proof
We have that:
- $\forall a, b \in S: a +_S b = a + b$
- $\forall a, b \in S: a \times_S b = a \times b$
- $\forall a \in S: \forall x \in G = a \circ_S x = a \circ x$
as $+_S$, $\times_S$ and $\circ_S$ are restrictions.
Let us verify the module axioms.
Module Axiom $\text M 1$: Distributivity over Module Addition
We need to show that:
- $\forall a \in S: \forall x, y \in G: a \circ_S \paren {x +_G y} = a \circ_S x +_G a \circ_S y$
We have:
\(\ds a \circ_S \paren {x +_G y}\) | \(=\) | \(\ds a \circ \paren {x +_G y}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a \circ x +_G a \circ y\) | Module Axiom $\text M 1$: Distributivity over Module Addition on $\struct {G, +_G, \circ}_R$ | |||||||||||
\(\ds \) | \(=\) | \(\ds a \circ_S x +_G a \circ_S y\) |
$\Box$
Module Axiom $\text M 2$: Distributivity over Scalar Addition
We need to show that:
- $\forall a, b \in S: \forall x \in G: \paren {a +_S b} \circ_S x = a \circ_S x +_G b \circ_S y$
We have:
\(\ds \paren {a +_S b} \circ_S x\) | \(=\) | \(\ds \paren {a + b} \circ x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a \circ x + b \circ x\) | Module Axiom $\text M 2$: Distributivity over Scalar Addition on $\struct {G, +_G, \circ}_R$ | |||||||||||
\(\ds \) | \(=\) | \(\ds a \circ_S x +_G b \circ_S x\) |
$\Box$
Module Axiom $\text M 3$: Associativity
We need to show that:
- $\forall a, b \in S: \forall x \in G: \paren {a \times_S b} \circ_S x = a \circ_S \paren {b \circ_S x}$
We have:
\(\ds \paren {a \times_S b} \circ_S x\) | \(=\) | \(\ds \paren {a \times b} \circ x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a \circ \paren {b \circ x}\) | Module Axiom $\text M 3$: Associativity on $\struct {G, +_G, \circ}_R$ | |||||||||||
\(\ds \) | \(=\) | \(\ds a \circ_S \paren {b \circ_S x}\) |
$\Box$
Thus $\struct {G, +_G, \circ_S}_S$ is an $S$-module.
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {V}$: Vector Spaces: $\S 26$. Vector Spaces and Modules: Example $26.3$