Subset Product/Examples

From ProofWiki
Jump to navigation Jump to search

Examples of Subset Product

Let $G$ be a group.

Example 1

Let $a \in G$ be an element of $G$.

Let:

\(\ds X\) \(=\) \(\ds \set {e, a^2}\)
\(\ds Y\) \(=\) \(\ds \set {e, a, a^3}\)

Let $\order a = 4$.

Then:

$\card {X Y} = 4$

where $\card {\, \cdot \,}$ denotes cardinality.


Example 2

Let $a \in G$ be an element of $G$.

Let:

\(\ds X\) \(=\) \(\ds \set {e, a^2}\)
\(\ds Y\) \(=\) \(\ds \set {e, a, a^3}\)

Let $\order a = 6$.

Then:

$\card {X Y} = 5$

where $\card {\, \cdot \,}$ denotes cardinality.


Example 3

Let the order of $G$ be $n \in \Z_{>0}$.

Let $X \subseteq G$ be a subset of $G$.

Let $\card X > \dfrac n 2$.

Then:

$X X = G$

where $X X$ denotes subset product.


Example 4

Let $S$ be the initial segment of the natural numbers $\N_{<3}$:

$\N_{<3} = \set {0, 1, 2}$

Let $\circ$ be the operation defined on $S$ by the Cayley table:

$\begin {array} {c|cccc}

\circ & 0 & 1 & 2 \\ \hline 0 & 0 & 1 & 2 \\ 1 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ \end {array}$

Let $\struct {\powerset S, \circ_\PP}$ be the power structure of $\struct {S, \circ}$.

Then every non-empty subset of $S$ which does not contain $0$ is invertible in $\struct {\powerset S, \circ_\PP}$.


Subset Product with Empty Set

Let $\struct {S, \circ}$ be an algebraic structure.

Let $A, B \in \powerset S$.


If $A = \O$ or $B = \O$, then $A \circ B = \O$.


Subsets of $\R$ under Multiplication

Let $\struct {\R, \times}$ be the multiplicative group of (non-zero) real numbers.

Let $S = \set {-1, 2}$.

Let $T = \set {1, 2, 3}$.

Then the subset product $S T$ is:

$ST = \set {-1, -2, -3, 2, 4, 6}$


Congruence Modulo $m$ in $\N_{<m}$

Let $m \in \Z_{>0}$ be a (strictly) positive integer.

Let $\N_{<m}$ denote the initial segment of the natural numbers $\N$:

$\N_{<m} = \set {0, 1, \ldots, m - 1}$

Let $\RR_m$ denote the equivalence relation:

$\forall x, y \in \Z: x \mathrel {\RR_m} y \iff \exists k \in \Z: x = y + k m$

For each $a \in \N_{<m}$, let $\eqclass a m$ be the equivalence class of $a \in \N_{<m}$ under $\RR_m$:

$\eqclass a m := \set {a + z m: z \in \Z}$

Let $\Z_m$ be the set defined as:

$\Z_m := \set {\eqclass a m: a \in \N_{<m} }$

Let $+_\PP$ denote the operation induced on $\powerset \Z$ by integer addition.

Then the algebraic structure $\struct {\Z_m, +_\PP}$ is closed in the sense:

$\forall \eqclass a m, \eqclass b m \in \Z_m: \eqclass a m +_\PP \eqclass b m \in \Z_m$