Subset Product within Semigroup is Associative/Corollary

From ProofWiki
Jump to navigation Jump to search

Corollary to Subset Product within Semigroup is Associative

Let $\struct {S, \circ}$ be a semigroup.


Then:

\(\ds x \circ \paren {y \circ S}\) \(=\) \(\ds \paren {x \circ y} \circ S\)
\(\ds x \circ \paren {S \circ y}\) \(=\) \(\ds \paren {x \circ S} \circ y\)
\(\ds \paren {S \circ x} \circ y\) \(=\) \(\ds S \circ \paren {x \circ y}\)


Proof

From the definition of Subset Product with Singleton:

\(\ds x \circ \paren {y \circ S}\) \(=\) \(\ds \set x \circ_\PP \paren {\set y \circ_\PP S}\)
\(\ds x \circ \paren {S \circ y}\) \(=\) \(\ds \set x \circ_\PP \paren {S \circ_\PP \set y}\)
\(\ds \paren {S \circ x} \circ y\) \(=\) \(\ds \paren {S \circ_\PP \set x} \circ_\PP \set y\)

The result then follows directly from Subset Product within Semigroup is Associative.

$\blacksquare$


Also see


Sources