Sum of Arctangent and Arccotangent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$ be a real number.


Then:

$\arctan x + \arccot x = \dfrac \pi 2$

where $\arctan$ and $\arccot$ denote arctangent and arccotangent respectively.


Proof

Let $y \in \R$ such that:

$\exists x \in \R: x = \map \cot {y + \dfrac \pi 2}$

Then:

\(\ds x\) \(=\) \(\ds \map \cot {y + \frac \pi 2}\)
\(\ds \) \(=\) \(\ds -\tan y\) Cotangent of Angle plus Right Angle
\(\ds \) \(=\) \(\ds \map \tan {-y}\) Tangent Function is Odd


Suppose $-\dfrac \pi 2 \le y \le \dfrac \pi 2$.

Then we can write:

$-y = \arctan x$

But then:

$\map \cot {y + \dfrac \pi 2} = x$

Now because $-\dfrac \pi 2 \le y \le \dfrac \pi 2$ it follows that:

$0 \le y + \dfrac \pi 2 \le \pi$

Hence:

$y + \dfrac \pi 2 = \arccot x$

That is:

$\dfrac \pi 2 = \arccot x + \arctan x$

$\blacksquare$


Sources