Sum of Complex Numbers in Exponential Form

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z_1 = r_1 e^{i \theta_1}$ and $z_2 = r_2 e^{i \theta_2}$ be complex numbers expressed in exponential form.

Let $z_3 = r_3 e^{i \theta_3} = z_1 + z_2$.

Then:

$r_3 = \sqrt { {r_1}^2 + {r_2}^2 + 2 r_1 r_2 \map \cos {\theta_1 - \theta_2} }$
$\theta_3 = \map \arctan {\dfrac {r_1 \sin \theta_1 + r_2 \sin \theta_2} {r_1 \cos \theta_1 + r_2 \cos \theta_2} }$


General Result

Let $n \in \Z_{>0}$ be a positive integer.

For all $k \in \set {1, 2, \dotsc, n}$, let:

$z_k = r_k e^{i \theta_k}$

be non-zero complex numbers in exponential form.


Let:

$r e^{i \theta} = \ds \sum_{k \mathop = 1}^n z_k = z_1 + z_2 + \dotsb + z_k$


Then:

\(\ds r\) \(=\) \(\ds \sqrt {\sum_{k \mathop = 1}^n {r_k}^2 + \sum_{1 \mathop \le j \mathop < k \mathop \le n} 2 {r_j} {r_k} \map \cos {\theta_j - \theta_k} }\)
\(\ds \theta\) \(=\) \(\ds \map \arctan {\dfrac {r_1 \sin \theta_1 + r_2 \sin \theta_2 + \dotsb + r_n \sin \theta_n} {r_1 \cos \theta_1 + r_2 \cos \theta_2 + \dotsb + r_n \cos \theta_n} }\)


Proof

We have:

\(\ds r_1 e^{i \theta_1} + r_2 e^{i \theta_2}\) \(=\) \(\ds r_1 \paren {\cos \theta_1 + i \sin \theta_1} + r_2 \paren {\cos \theta_2 + i \sin \theta_2}\) Definition of Polar Form of Complex Number
\(\ds \) \(=\) \(\ds \paren {r_1 \cos \theta_1 + r_2 \cos \theta_2} + i \paren {r_1 \sin \theta_1 + r_2 \sin \theta_2}\)

Then:

\(\ds {r_3}^2\) \(=\) \(\ds {r_1}^2 + {r_2}^2 + 2 r_1 r_2 \map \cos {\theta_1 - \theta_2}\) Complex Modulus of Sum of Complex Numbers
\(\ds \leadsto \ \ \) \(\ds r_3\) \(=\) \(\ds \sqrt { {r_1}^2 + {r_2}^2 + 2 r_1 r_2 \map \cos {\theta_1 - \theta_2} }\)


and similarly:

$\theta_3 = \map \arctan {\dfrac {r_1 \sin \theta_1 + r_2 \sin \theta_2} {r_1 \cos \theta_1 + r_2 \cos \theta_2} }$

$\blacksquare$


Sources