Recurrence Relation for Euler Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z_{>0}$ be a (strictly) positive integer.

Then:

\(\ds E_{2 n}\) \(=\) \(\ds -\sum_{k \mathop = 0}^{n - 1} \dbinom {2 n} {2 k} E_{2 k}\)
\(\ds \) \(=\) \(\ds -\paren {\binom {2 n} 0 E_0 + \binom {2 n} 2 E_2 + \binom {2 n} 4 E_4 + \cdots + \binom {2 n} {2 n - 2} E_{2 n - 2} }\)

where $E_n$ denotes the $n$th Euler number.


Proof

\(\ds \forall n \in \Z_{>0}: \, \) \(\ds \sum_{k \mathop = 0}^n \binom {2 n} {2 k} E_{2 k}\) \(=\) \(\ds 0\) Sum of Euler Numbers by Binomial Coefficients Vanishes
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 0}^{n - 1} \dbinom {2 n} {2 k} E_{2 k} + \dbinom {2 n} {2 n} E_{2 n}\) \(=\) \(\ds 0\) separating out case where $k = n$
\(\ds \leadsto \ \ \) \(\ds E_{2 n}\) \(=\) \(\ds -\sum_{k \mathop = 0}^{n - 1} \dbinom {2 n} {2 k} E_{2 k}\) Binomial Coefficient with Self: $\dbinom {2 n} {2 n} = 1$

$\blacksquare$


Sources