Sum of Geometric Sequence/Proof 4/Lemma

From ProofWiki
Jump to navigation Jump to search

Lemma

Let $n \in \N_{>0}$.

Then:

$\ds \paren {1 - x} \sum_{i \mathop = 0}^{n - 1} x^i = 1 - x^n$


Proof

Proof by induction on $n$:


For all $n \in \N_{> 0}$, let $\map P n$ be the proposition:

$\ds \paren {1 - x} \sum_{i \mathop = 0}^{n - 1} x^i = 1 - x^n$


Basis for the Induction

$\map P 1$ is the case:

\(\ds \paren {1 - x} \sum_{i \mathop = 1}^{1 - 1} x^i\) \(=\) \(\ds 1 \paren {1 - x}\)
\(\ds \) \(=\) \(\ds 1 - x\)
\(\ds \) \(=\) \(\ds 1 - x^1\)

This is our basis for the induction.


Induction Hypothesis

Now we need to show that, if $\map P k$ is true, where $k \ge 2$, then it logically follows that $\map P {k + 1}$ is true.


So this is our induction hypothesis:

$\ds \paren {1 - x} \sum_{i \mathop = 0}^{k - 1} x^i = 1 - x^k$


Then we need to show:

$\ds \paren {1 - x} \sum_{i \mathop = 0}^k x^i = 1 - x^{k + 1}$


Induction Step

This is our induction step:


\(\ds \paren {1 - x} \sum_{i \mathop = 0}^k x^i\) \(=\) \(\ds \paren {1 - x} \paren {x^k + \sum_{i \mathop = 0}^{k - 1} x^i}\)
\(\ds \) \(=\) \(\ds x^k - x^{k + 1} + \paren {1 - x} \sum_{i \mathop = 0}^{k - 1} x^i\)
\(\ds \) \(=\) \(\ds x^k - x^{k + 1} + 1 - x^k\) from the induction hypothesis
\(\ds \) \(=\) \(\ds 1 - x^{k + 1}\) gathering terms


So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.


Therefore:

$\ds \paren {1 - x} \sum_{i \mathop = 0}^{n - 1} x^i = 1 - x^n$

$\blacksquare$