Sum of Hyperbolic Sine and Cosine equals Exponential

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z \in \C$ be a complex number.

Then:

$e^z = \cosh z + \sinh z$


where:

$e^z$ denotes the complex exponential function
$\cosh z$ denotes the cosine function
$\sinh z$ denotes sine function


Proof

\(\ds \cosh z + \sinh z\) \(=\) \(\ds \dfrac {e^z + e^{-z} } 2 + \dfrac {e^z - e^{-z} } 2\) Definition of Hyperbolic Cosine and Definition of Hyperbolic Cosine
\(\ds \) \(=\) \(\ds \dfrac {e^z + e^z + e^{-z} - e^{-z} } 2\)
\(\ds \) \(=\) \(\ds e^z\)

$\blacksquare$


Also see


Sources