Sum of Reciprocals of Powers as Euler Product
Theorem
Let $\zeta$ be the Riemann zeta function.
Let $s \in \C$ be a complex number with real part $\sigma > 1$.
Then:
- $\ds \map \zeta s = \prod_{\text {$p$ prime} } \frac 1 {1 - p^{-s} }$
where the infinite product runs over the prime numbers.
Corollary 1
Let $\zeta$ be the Riemann zeta function.
Let $s \in \C$ be a complex number with real part $\sigma > 1$.
Then:
- $\ds\prod_{\text {$p$ prime} } \paren {1 + p^{-s} } = \dfrac {\map \zeta s} {\map \zeta {2 s} }$
where the infinite product runs over the prime numbers.
Corollary 2
Let $\zeta$ be the Riemann zeta function.
Let $s \in \C$ be a complex number with real part $\sigma > 1$.
Then:
- $\ds \prod_{\text {$p$ prime} } \paren {\frac {1 + p^{-s} } {1 - p^{-s} } } = \dfrac {\paren {\map \zeta s}^2} {\map \zeta {2 s} }$
Proof 1
By definition of Euler product:
- $\ds \sum_{n \mathop = 1}^\infty a_n n^{-z} = \prod_p \frac 1 {1 - a_p p^{-z} }$
if and only if $\ds \sum_{n \mathop = 1}^\infty a_n n^{-z}$ is absolutely convergent.
![]() | This article, or a section of it, needs explaining. In particular: I believe only "if" is true as shown in Product Form of Sum on Completely Multiplicative Function. Or is there a proof for "only if"? You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Explain}} from the code. |
For all $n \in \Z_{\ge 1}$, let $a_n = 1$.
From Convergence of P-Series:
- $\ds \sum_{n \mathop = 1}^\infty n^{-z}$ is absolutely convergent
- $\cmod z > 1$
It then follows that:
- $\ds \sum_{n \mathop = 1}^\infty \frac 1 {n^z} = \prod_p \frac 1 {1 - p^{-z} }$
$\blacksquare$
Proof 2
From Sum of Infinite Geometric Sequence:
- $\dfrac 1 {1 - p^{-z} } = 1 + \dfrac 1 {p^z} + \dfrac 1 {p^{2 z} } + \cdots$
From Convergence of P-Series:
- $\ds \sum_{n \mathop = 1}^\infty n^{-z}$ is absolutely convergent
- $\cmod z \gt 1$
Thus:
\(\ds \sum_p \dfrac 1 {1 - p^{-z} }\) | \(=\) | \(\ds \sum_p \paren {1 + \dfrac 1 {p^z} + \dfrac 1 {p^{2 z} } + \dfrac 1 {p^{3 z} } + \cdots}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {1 + \dfrac 1 {2^z} + \dfrac 1 {2^{2 z} } + \dfrac 1 {2^{3 z} } + \cdots}\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds \times \, \) | \(\ds \paren {1 + \dfrac 1 {3^z} + \dfrac 1 {3^{2 z} } + \dfrac 1 {3^{3 z} } + \cdots}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds \times \, \) | \(\ds \paren {1 + \dfrac 1 {5^z} + \dfrac 1 {5^{2 z} } + \dfrac 1 {5^{3 z} } + \cdots}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds \times \, \) | \(\ds \cdots\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \dfrac 1 {2^z} + \dfrac 1 {3^z} + \dfrac 1 {2^{2 z} } + \dfrac 1 {5^z}\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \dfrac 1 {2^z 3^z} + \dfrac 1 {7^z} + \dfrac 1 {2^{3 z} } + \dfrac 1 {3^{2 z} }\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \cdots\) |
The result follows from the Fundamental Theorem of Arithmetic.
$\blacksquare$
![]() | This article contains statements that are justified by handwavery. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding precise reasons why such statements hold. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Handwaving}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Historical Note
The Riemann $\zeta$ Function presented as the Sum of Reciprocals of Powers as Euler Product was discovered by Leonhard Paul Euler.
Sources
- 1983: François Le Lionnais and Jean Brette: Les Nombres Remarquables ... (previous) ... (next): $0,5$
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $0 \cdotp 5$
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {A}.32$: Riemann ($\text {1826}$ – $\text {1866}$)
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $0 \cdotp 5$