Sum of Reciprocals of Squares Alternating in Sign
Jump to navigation
Jump to search
Theorem
\(\ds \dfrac {\pi^2} {12}\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \dfrac {\paren {-1}^{n + 1} } {n^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {1^2} - \frac 1 {2^2} + \frac 1 {3^2} - \frac 1 {4^2} + \cdots\) |
Proof 1
Let $\map f x$ be the real function defined on $\openint 0 {2 \pi}$ as:
- $\map f x = \begin {cases} \paren {x - \pi}^2 & : 0 < x \le \pi \\ \pi^2 & : \pi < x < 2 \pi \end {cases}$
From Fourier Series: Square of x minus pi, Square of pi, its Fourier series can be expressed as:
- $(1): \quad \map f x \sim \displaystyle \frac {2 \pi^2} 3 + \sum_{n \mathop = 1}^\infty \paren {\frac {2 \cos n x} {n^2} + \paren {\frac {\paren {-1}^n \pi} n + \frac {2 \paren {\paren {-1}^n - 1} } {\pi n^3} } \sin n x}$
We have that:
\(\ds \map f {\pi - 0}\) | \(=\) | \(\ds \paren {\pi - \pi}^2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \map f {\pi + 0}\) | \(=\) | \(\ds \pi^2\) |
where $\map f {\pi - 0}$ and $\map f {\pi + 0}$ denote the limit from the left and limit from the right respectively of $\map f \pi$.
It is apparent that $\map f x$ satisfies the Dirichlet conditions:
- $(\text D 1): \quad f$ is bounded on $\openint 0 {2 \pi}$
- $(\text D 2): \quad f$ has a finite number of local maxima and local minima.
- $(\text D 3): \quad f$ has $1$ discontinuity, which is finite.
Hence from Fourier's Theorem:
\(\ds \map f \pi\) | \(=\) | \(\ds \frac {\map f {\pi - 0} + \map f {\pi + 0} } 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {0 + \pi^2} 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\pi^2} 2\) |
Thus setting $x = \pi$ in $(1)$:
\(\ds \map f \pi\) | \(=\) | \(\ds \frac {2 \pi^2} 3 + \sum_{n \mathop = 1}^\infty \paren {\frac {2 \cos n \pi} {n^2} + \paren {\frac {\paren {-1}^n \pi} n + \frac {2 \paren {\paren {-1}^n - 1} } {\pi n^3} } \sin n \pi}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\pi^2} 2\) | \(=\) | \(\ds \frac {2 \pi^2} 3 + 2 \sum_{n \mathop = 1}^\infty \frac {\cos n \pi} {n^2}\) | Sine of Multiple of Pi | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\pi^2} 4\) | \(=\) | \(\ds \frac {\pi^2} 3 + \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^n} {n^2}\) | Cosine of Multiple of Pi and simplification | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds -\frac {\pi^2} {12}\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^n} {n^2}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\pi^2} {12}\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n + 1} } {n^2}\) | changing sign and subsuming into powers of $-1$ |
$\blacksquare$
Proof 2
\(\ds \sum_{n \mathop = 1}^\infty \frac {\left({-1}\right)^{n + 1} } {n^2}\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac 1 {\left({2 n - 1}\right)^2} - \sum_{n \mathop = 1}^\infty \frac 1 {\left({2 n}\right)^2}\) | separating odd positive terms from even negative terms | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac 1 {\left({2 n - 1}\right)^2} - \frac 1 4 \sum_{n \mathop = 1}^\infty \frac 1 {n^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\pi^2} 8 - \frac 1 4 \times \frac {\pi^2} 6\) | Sum of Reciprocals of Squares of Odd Integers, Basel Problem | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\pi^2 \left({3 - 1}\right)} {24}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\pi^2} {12}\) |
$\blacksquare$
Proof 3
Let $\map f x$ be the real function defined on $\openint {-\pi} \pi$ as:
- $\map f x = \pi^2 - x^2$
By Fourier Series: $\pi^2 - x^2$ over $\openint {-\pi} \pi$:
- $\ds \pi^2 - x^2 \sim \frac {2 \pi^2} 3 + 4 \sum_{n \mathop = 1}^\infty \paren {-1}^{n - 1} \frac {\cos n x} {n^2}$
for $x \in \openint {-\pi} \pi$.
Setting $x = 0$:
\(\ds \pi^2 - 0^2\) | \(=\) | \(\ds \frac {2 \pi^2} 3 + 4 \sum_{n \mathop = 1}^\infty \paren {-1}^{n - 1} \frac {\cos 0} {n^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {2 \pi^2} 3 + 4 \sum_{n \mathop = 1}^\infty \paren {-1}^{n - 1} \frac 1 {n^2}\) | Cosine of Zero is One | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\pi^2} {12}\) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \paren {-1}^{n - 1} \frac 1 {n^2}\) | simplification | ||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 1}^\infty \frac {\paren {-1}^{n + 1} } {n^2}\) | rearrangement |
$\blacksquare$
Also see
- Sum of Reciprocals of Even Powers of Integers Alternating in Sign
- Sum of Reciprocals of Fourth Powers Alternating in Sign
- Sum of Reciprocals of Sixth Powers Alternating in Sign
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 19$: Series involving Reciprocals of Powers of Positive Integers: $19.22$