Sum of Sequence of Binomial Coefficients by Sum of Powers of Integers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n, k \in \Z_{\ge 0}$ be positive integers.

Let $S_k = \ds \sum_{i \mathop = 1}^n i^k$.


Then:

$\ds \sum_{i \mathop = 1}^k \binom {k + 1} i S_i = \paren {n + 1}^{k + 1} - \paren {n + 1}$


Proof

Let $N$ be a positive integer.

Then:

\(\ds \paren {N + 1}^{k + 1} - N^{k + 1}\) \(=\) \(\ds \sum_{i \mathop = 0}^{k + 1} \binom {k + 1} i N^i - N^{k + 1}\) Binomial Theorem: Integral Index
\(\ds \) \(=\) \(\ds \binom {k + 1} 0 + \sum_{i \mathop = 1}^k \binom {k + 1} i N^i + \binom {k + 1} {k + 1} N^{k + 1} - N^{k + 1}\)
\(\ds \) \(=\) \(\ds 1 + \sum_{i \mathop = 1}^k \binom {k + 1} i N^i\) Definition of Binomial Coefficient

Summing from $N = 1$ to $N = n$, we have on the left hand side:

\(\ds \sum_{N \mathop = 1}^n \paren {\paren {N + 1}^{k + 1} - N^{k + 1} }\) \(=\) \(\ds \paren {n + 1}^{k + 1} - 1^{k + 1}\) Telescoping Series: Example 1
\(\ds \) \(=\) \(\ds \paren {n + 1}^{k + 1} - 1\)

So, we have:

\(\ds \paren {n + 1}^{k + 1} - 1\) \(=\) \(\ds \sum_{N \mathop = 1}^n \paren {1 + \sum_{i \mathop = 1}^k \binom {k + 1} i N^i}\)
\(\ds \) \(=\) \(\ds \sum_{N \mathop = 1}^n 1 + \sum_{i \mathop = 1}^k \binom {k + 1} i \sum_{N \mathop = 1}^n N^i\)
\(\ds \) \(=\) \(\ds n + \sum_{i \mathop = 1}^k \binom {k + 1} i S_i\)

giving:

$\ds \sum_{i \mathop = 1}^k \binom {k + 1} i S_i = \paren {n + 1}^{k + 1} - \paren {n + 1}$

$\blacksquare$


Sources