Sum of Sequence of Cubes/Proof using Bernoulli Numbers
Jump to navigation
Jump to search
Theorem
- $\ds \sum_{i \mathop = 1}^n i^3 = \paren {\sum_{i \mathop = 1}^n i}^2 = \frac {n^2 \paren {n + 1}^2} 4$
Proof
From Sum of Powers of Positive Integers:
\(\ds \sum_{i \mathop = 1}^n i^p\) | \(=\) | \(\ds 1^p + 2^p + \cdots + n^p\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n^{p + 1} } {p + 1} + \sum_{k \mathop = 1}^p \frac {B_k \, p^{\underline {k - 1} } \, n^{p - k + 1} } {k!}\) |
where $B_k$ are the Bernoulli numbers.
Setting $p = 3$:
\(\ds \sum_{i \mathop = 1}^n i^3\) | \(=\) | \(\ds \frac {n^{3 + 1} } {3 + 1} + \sum_{k \mathop = 1}^3 \frac {B_k \, 3^{\underline {k - 1} } \, n^{3 - k + 1} } {k!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n^4} 4 + \frac {B_1 \, 3^{\underline 0} \, n^3} {1!} + \frac {B_2 \, 3^{\underline 1} \, n^2} {2!} + \frac {B_3 \, 3^{\underline 2} \, n^1} {3!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n^4} 4 + \frac 1 2 \frac {n^3} {1!} + \frac 1 6 \frac {3 n^2} {2!} + 0 \frac {3 \times 2 n} {3!}\) | Definition of Bernoulli Numbers and Definition of Falling Factorial | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n^4} 4 + \frac {n^3} 2 + \frac {n^2} 4\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n^2 \left({n + 1}\right)^2} 4\) | after algebra |
Hence the result.
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 19$: Sums of Powers of Positive Integers: $19.11$