Sum of Sequence of Odd Squares/Formulation 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \forall n \in \N: \sum_{i \mathop = 0}^n \paren {2 i + 1}^2 = \frac {\paren {n + 1} \paren {2 n + 1} \paren {2 n + 3} } 3$


Proof

\(\ds \sum_{i \mathop = 0}^n \paren {2 i + 1}^2\) \(=\) \(\ds \sum_{i \mathop = 0}^n \paren {2 i}^2 + \sum_{i \mathop = 0}^n 4 i + \sum_{i \mathop = 0}^n 1\)
\(\ds \) \(=\) \(\ds \frac {2 n \paren {n + 1} \paren {2 n + 1} } 3 + 4 \sum_{i \mathop = 0}^n i + \sum_{i \mathop = 0}^n 1\) Sum of Sequence of Even Squares
\(\ds \) \(=\) \(\ds \frac {2 n \paren {n + 1} \paren {2 n + 1} } 3 + 4 \sum_{i \mathop = 1}^n i + \sum_{i \mathop = 0}^n 1\) adjustment of indices: $4 i = 0$ when $i = 0$
\(\ds \) \(=\) \(\ds \frac {2 n \paren {n + 1} \paren {2 n + 1} } 3 + 4 \frac {n \paren {n + 1} } 2 + \sum_{i \mathop = 0}^n 1\) Closed Form for Triangular Numbers
\(\ds \) \(=\) \(\ds \frac {2 n \paren {n + 1} \paren {2 n + 1} } 3 + 2 n \paren {n + 1} + \paren {n + 1}\) further simplification
\(\ds \) \(=\) \(\ds \frac {\paren {n + 1} \paren {2 n \paren {2 n + 1} + 6 n + 3} } 3\) factorising
\(\ds \) \(=\) \(\ds \frac {\paren {n + 1} \paren {4 n^2 + 8 n + 3} } 3\) multiplying out
\(\ds \) \(=\) \(\ds \frac {\paren {n + 1} \paren {2 n + 1} \paren {2 n + 3} } 3\) factorising

$\blacksquare$