Sum of Sequence of Products of Consecutive Integers/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \sum_{j \mathop = 1}^n j \paren {j + 1}\) \(=\) \(\ds 1 \times 2 + 2 \times 3 + \dotsb + n \paren {n + 1}\)
\(\ds \) \(=\) \(\ds \frac {n \paren {n + 1} \paren {n + 2} } 3\)


Proof

\(\ds \sum_{j \mathop = 1}^n j \paren {j + 1}\) \(=\) \(\ds \sum_{j \mathop = 1}^n \paren {j^2 + j}\)
\(\ds \) \(=\) \(\ds \sum_{j \mathop = 1}^n j^2 + \sum_{j \mathop = 1}^n j\)
\(\ds \) \(=\) \(\ds \sum_{j \mathop = 1}^n j^2 + \frac {n \paren {n + 1} } 2\) Closed Form for Triangular Numbers
\(\ds \) \(=\) \(\ds \frac {n \paren {n + 1} \paren {2 n + 1} } 6 + \frac {n \paren {n + 1} } 2\) Sum of Sequence of Squares
\(\ds \) \(=\) \(\ds n \paren {n + 1} \paren {\frac {\paren {2 n + 1} } 6 + \frac 1 2}\) extracting $n \paren {n + 1}$ as a common factor
\(\ds \) \(=\) \(\ds \frac {n \paren {n + 1} \paren {n + 2} } 3\) simplifying