Sum of Sequence of Products of Consecutive Odd Reciprocals

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \sum_{j \mathop = 0}^n \frac 1 {\paren {2 j + 1} \paren {2 j + 3} }\) \(=\) \(\ds \frac 1 {1 \times 3} + \frac 1 {3 \times 5} + \frac 1 {5 \times 7} + \frac 1 {7 \times 9} + \cdots + \frac 1 {\paren {2 n + 1} \paren {2 n + 3} }\)
\(\ds \) \(=\) \(\ds \frac {n + 1} {2 n + 3}\)


Corollary

\(\ds \sum_{j \mathop = 0}^\infty \frac 1 {\paren {2 j + 1} \paren {2 j + 3} }\) \(=\) \(\ds \frac 1 {1 \times 3} + \frac 1 {3 \times 5} + \frac 1 {5 \times 7} + \frac 1 {7 \times 9} + \cdots\)
\(\ds \) \(=\) \(\ds \frac 1 2\)


Proof

We observe that:

\(\ds \frac 1 {2 j + 1} - \frac 1 {2 j + 3}\) \(=\) \(\ds \frac {\paren {2 j + 3} - \paren{2 j + 1} } {\paren {2 j + 1} \paren {2 j + 3} }\)
\(\ds \) \(=\) \(\ds \frac 2 {\paren {2 j + 1} \paren {2 j + 3} }\)

and that $\ds \sum_{j \mathop = 0}^n \paren {\frac 1 {2 j + 1} - \frac 1 {2 j + 3} }$ is a telescoping series.

Therefore:

\(\ds \sum_{j \mathop = 0}^n \frac 1 {\paren {2 j + 1} \paren {2 j + 3} }\) \(=\) \(\ds \frac 1 2 \sum_{j \mathop = 1}^n \paren {\frac 1 {2 j + 1} - \frac 1 {2 j + 3} }\) Telescoping Series: Example 1
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {\frac 1 {2 \times 0 + 1} - \frac 1 {2 n + 3} }\)
\(\ds \) \(=\) \(\ds \frac 1 2 - \frac 1 {4 n + 6}\)
\(\ds \) \(=\) \(\ds \frac {\paren {2 n + 3} - 1} {4 n + 6}\)
\(\ds \) \(=\) \(\ds \frac {2 n + 2} {4 n + 6}\)
\(\ds \) \(=\) \(\ds \frac {n + 1} {2 n + 3}\)

$\blacksquare$