Sum of Sequence of Squares/Proof by Products of Consecutive Integers

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \forall n \in \N: \sum_{i \mathop = 1}^n i^2 = \frac {n \paren {n + 1} \paren {2 n + 1} } 6$


Proof

\(\ds \sum_{i \mathop = 1}^n 3 i \paren {i + 1}\) \(=\) \(\ds n \paren {n + 1} \paren {n + 2}\) Sum of Sequence of Products of Consecutive Integers
\(\ds \leadsto \ \ \) \(\ds \sum_{i \mathop = 1}^n 3 i^2 + \sum_{i \mathop = 1}^n 3 i\) \(=\) \(\ds n \paren {n + 1} \paren {n + 2}\)
\(\ds \leadsto \ \ \) \(\ds \sum_{i \mathop = 1}^n 3 i^2\) \(=\) \(\ds n \paren {n + 1} \paren {n + 2} - 3 \frac {n \paren {n + 1} } 2\) Closed Form for Triangular Numbers
\(\ds \leadsto \ \ \) \(\ds \sum_{i \mathop = 1}^n i^2\) \(=\) \(\ds \frac {n \paren {n + 1} \paren {n + 2} } 3 - \frac {n \paren {n + 1} } 2\)
\(\ds \leadsto \ \ \) \(\ds \sum_{i \mathop = 1}^n i^2\) \(=\) \(\ds \frac {2 n \paren {n + 1} \paren {n + 2} - 3 n \paren {n + 1} } 6\)
\(\ds \leadsto \ \ \) \(\ds \sum_{i \mathop = 1}^n i^2\) \(=\) \(\ds \frac {n \paren {n + 1} \paren {2 n + 1} } 6\)

$\blacksquare$