Sum of Sequence of Squares/Proof by Sum of Differences of Cubes

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \forall n \in \N: \sum_{i \mathop = 1}^n i^2 = \frac {n \paren {n + 1} \paren {2 n + 1} } 6$


Proof

\(\ds \sum_{i \mathop = 1}^n \paren {\paren {i + 1}^3 - i^3}\) \(=\) \(\ds \sum_{i \mathop = 1}^n \paren {i^3 + 3 i^2 + 3 i + 1 - i^3}\) Binomial Theorem
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \paren {3 i^2 + 3 i + 1}\)
\(\ds \) \(=\) \(\ds 3 \sum_{i \mathop = 1}^n i^2 + 3 \sum_{i \mathop = 1}^n i + \sum_{i \mathop = 1}^n 1\) Summation is Linear
\(\ds \) \(=\) \(\ds 3\sum_{i \mathop = 1}^n i^2 + 3 \frac {n \paren {n + 1} } 2 + n\) Closed Form for Triangular Numbers

On the other hand:

\(\ds \sum_{i \mathop = 1}^n \paren {\paren {i + 1}^3 - i^3}\) \(=\) \(\ds \paren {n + 1}^3 - n^3 + n^3 - \paren {n - 1}^3 + \paren {n - 1}^3 - \cdots + 2^3 - 1^3\) Definition of Summation
\(\ds \) \(=\) \(\ds \paren {n + 1}^3 - 1^3\) Telescoping Series: Example 2
\(\ds \) \(=\) \(\ds n^3 + 3n^2 + 3n + 1 - 1\) Binomial Theorem
\(\ds \) \(=\) \(\ds n^3 + 3n^2 + 3n\)

Therefore:

\(\ds 3 \sum_{i \mathop = 1}^n i^2 + 3 \frac {n \paren {n + 1} } 2 + n\) \(=\) \(\ds n^3 + 3 n^2 + 3 n\)
\(\ds \leadsto \ \ \) \(\ds 3 \sum_{i \mathop = 1}^n i^2\) \(=\) \(\ds n^3 + 3 n^2 + 3 n - 3 \frac {n \paren {n + 1} } 2 - n\)

Therefore:

\(\ds \sum_{i \mathop = 1}^n i^2\) \(=\) \(\ds \frac 1 3 \paren {n^3 + 3 n^2 + 3 n - 3 \frac {n \paren {n + 1} }2 - n}\)
\(\ds \) \(=\) \(\ds \frac 1 3 \paren {n^3 + 3 n^2 + 3 n - \frac {3 n^2} 2 - \frac {3 n} 2 - n}\)
\(\ds \) \(=\) \(\ds \frac 1 3 \paren {n^3 + \frac {3 n^2} 2 + \frac n 2}\)
\(\ds \) \(=\) \(\ds \frac 1 6 n \paren {2 n^2 + 3 n + 1}\)
\(\ds \) \(=\) \(\ds \frac 1 6 n \paren {n + 1} \paren {2 n + 1}\)

$\blacksquare$