Sum of Sequences of Fifth and Seventh Powers

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \sum_{i \mathop = 1}^n i^5 + \sum_{i \mathop = 1}^n i^7 = 2 \paren {\sum_{i \mathop = 1}^n i}^4$


Proof

Proof by induction:

For all $n \in \N_{> 0}$, let $\map P n$ be the proposition:

$\ds \sum_{i \mathop = 1}^n i^5 + \sum_{i \mathop = 1}^n i^7 = 2 \paren {\sum_{i \mathop = 1}^n i}^4$


Basis for the Induction

\(\ds \sum_{i \mathop = 1}^1 i^5 + \sum_{i \mathop = 1}^1 i^7\) \(=\) \(\ds 1^5 + 1^7\)
\(\ds \) \(=\) \(\ds 2 \times 1^4\)
\(\ds \) \(=\) \(\ds 2 \paren {\sum_{i \mathop = 1}^1 i}^4\)

So $\map P 1$ has been demonstrated to hold.

This is our basis for the induction.


Induction Hypothesis

Now we need to show that, if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.


So this is our induction hypothesis:

$\ds \sum_{i \mathop = 1}^k i^5 + \sum_{i \mathop = 1}^k i^7 = 2 \paren {\sum_{i \mathop = 1}^k i}^4$


Then we need to show:

$\ds \sum_{i \mathop = 1}^{k + 1} i^5 + \sum_{i \mathop = 1}^{k + 1} i^7 = 2 \paren {\sum_{i \mathop = 1}^{k + 1} i}^4$


Induction Step

This is our induction step:


\(\ds 2 \paren {\sum_{i \mathop = 1}^{k + 1} i}^4\) \(=\) \(\ds 2 \paren {\sum_{i \mathop = 1}^{k + 1} i^3}^2\) Sum of Sequence of Cubes
\(\ds \) \(=\) \(\ds 2 \paren {\paren {k + 1}^3 + \sum_{i \mathop = 1}^k i^3}^2\) Definition of Summation
\(\ds \) \(=\) \(\ds 2 \paren {k + 1}^6 + 4 \paren {\paren {k + 1}^3 \sum_{i \mathop = 1}^k i^3} + 2 \paren {\sum_{i \mathop = 1}^k i^3}^2\) Square of Sum
\(\ds \) \(=\) \(\ds 2 \paren {k + 1}^6 + 4 \paren {\paren {k + 1}^3 \frac {k^2 \paren {k + 1}^2} 4} + 2 \paren {\sum_{i \mathop = 1}^k i}^4\) Sum of Sequence of Cubes
\(\ds \) \(=\) \(\ds 2 \paren {k + 1}^6 + \paren {k^2 \paren {k + 1}^5} + \sum_{i \mathop = 1}^k i^7 + \sum_{i \mathop = 1}^k i^5\) Induction Hypothesis
\(\ds \) \(=\) \(\ds \paren {k + 1}^5 \paren {2 \paren {k + 1} + k^2} + \sum_{i \mathop = 1}^k i^7 + \sum_{i \mathop = 1}^k i^5\) simplifying first $2$ terms
\(\ds \) \(=\) \(\ds \paren {k + 1}^5 \paren {\paren {k^2 + 2 k + 1} + 1} + \sum_{i \mathop = 1}^k i^7 + \sum_{i \mathop = 1}^k i^5\) simplifying
\(\ds \) \(=\) \(\ds \paren {k + 1}^5 \paren {\paren {k + 1}^2 + 1} + \sum_{i \mathop = 1}^k i^7 + \sum_{i \mathop = 1}^k i^5\) Square of Sum
\(\ds \) \(=\) \(\ds \paren {k + 1}^7 + \paren {k + 1}^5 + \sum_{i \mathop = 1}^k i^7 + \sum_{i \mathop = 1}^k i^5\) simplifying
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^{k + 1} i^7 + \sum_{i \mathop = 1}^{k + 1} i^5\) Definition of Summation

So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.

Therefore:

$\ds \forall n \in \N_{>0}: \sum_{i \mathop = 1}^n i^5 + \sum_{i \mathop = 1}^n i^7 = 2 \paren {\sum_{i \mathop = 1}^n i}^4$

$\blacksquare$


Sources