Sum of Squared Deviations from Mean
Jump to navigation
Jump to search
Theorem
Let $S = \set {x_1, x_2, \ldots, x_n}$ be a set of real numbers.
Let $\overline x$ denote the arithmetic mean of $S$.
Then:
- $\ds \sum_{i \mathop = 1}^n \paren {x_i - \overline x}^2 = \sum_{i \mathop = 1}^n \paren {x_i^2 - \overline x^2}$
Corollary 1
- $\ds \sum_{i \mathop = 1}^n \paren {x_i - \overline x}^2 = \sum_{i \mathop = 1}^n x_i^2 - n \overline x^2$
Corollary 2
- $\ds \sum_{i \mathop = 1}^n \paren {x_i - \overline x}^2 = \sum_{i \mathop = 1}^n x_i^2 - \frac 1 n \paren {\sum_{i \mathop = 1}^n x_i}^2$
Proof 1
For brevity, let us write $\ds \sum$ for $\ds \sum_{i \mathop = 1}^n$.
Then:
\(\ds \sum \paren {x_i - \overline x}^2\) | \(=\) | \(\ds \sum \paren {x_i - \overline x} \paren {x_i - \overline x}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum x_i \paren {x_i - \overline x} - \overline x \sum \paren {x_i - \overline x}\) | Summation is Linear | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum x_i \paren {x_i - \overline x} - 0\) | Sum of Deviations from Mean | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum x_i \paren {x_i - \overline x} + 0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum x_i \paren {x_i - \overline x} + \overline x \sum \paren {x_i - \overline x}\) | Sum of Deviations from Mean | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum \paren {x_i + \overline x} \paren {x_i - \overline x}\) | Summation is Linear | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum \paren {x_i^2 - \overline x^2}\) |
$\blacksquare$
Proof 2
In this context, $x_1, x_2, \ldots, x_n$ are instances of a discrete random variable.
Hence the result Variance as Expectation of Square minus Square of Expectation can be applied:
- $\var X = \expect {X^2} - \paren {\expect X}^2$
which means the same as this but in the language of probability theory.
$\blacksquare$