Sum over j of Function of Floor of mj over n/Corollary

From ProofWiki
Jump to navigation Jump to search

Corollary to Sum over $j$ of $\map f {\floor {\frac {m j} n} }$

$\ds \sum_{0 \mathop \le j \mathop < n} \binom {\floor {m j / n} + 1} k + \sum_{0 \mathop \le j \mathop < m} \ceiling {\dfrac {j n} m} \binom j {k - 1} = n \binom m k$


Proof

\(\ds \sum_{0 \mathop \le j \mathop < n} \binom {\floor {m j / n} + 1} k\) \(=\) \(\ds \sum_{0 \mathop \le r \mathop < m} \ceiling {\dfrac {r n} m} \paren {\binom r k - \binom {r + 1} k} + n \binom m k\) Sum over $j$ of $\map f {\floor {\dfrac {m j} n} }$
\(\ds \) \(=\) \(\ds \sum_{0 \mathop \le j \mathop < m} \ceiling {\dfrac {j n} m} \paren {-\binom j {k - 1} } + n \binom m k\) Pascal's Rule and renaming

Hence:

\(\ds \sum_{0 \mathop \le j \mathop < n} \binom {\floor {m j / n} + 1} k + \sum_{0 \mathop \le j \mathop < m} \ceiling {\dfrac {j n} m} \binom j {k - 1}\) \(=\) \(\ds n \binom m k\)

$\blacksquare$


Sources