Sum over k of Unsigned Stirling Numbers of First Kind by x^k

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \sum_k {n \brack k} x^k = x^{\overline n}$

where:

$\ds {n \brack k}$ denotes an unsigned Stirling number of the first kind
$x^{\overline n}$ denotes $x$ to the $n$ rising.


Proof

\(\ds \sum_k \paren {-1}^{n - k} {n \brack k} x^k\) \(=\) \(\ds x^{\underline n}\) Definition of Unsigned Stirling Numbers of the First Kind
\(\ds \leadsto \ \ \) \(\ds \sum_k \paren {-1}^{n - k} {n \brack k} \paren {-x}^k\) \(=\) \(\ds \paren {-x}^{\underline n}\) putting $-x$ for $x$
\(\ds \leadsto \ \ \) \(\ds \paren {-1}^n \sum_k {n \brack k} x^k\) \(=\) \(\ds \paren {-x}^{\underline n}\)
\(\ds \leadsto \ \ \) \(\ds \sum_k {n \brack k} x^k\) \(=\) \(\ds \paren {-1}^n \paren {-x}^{\underline n}\)
\(\ds \) \(=\) \(\ds x^{\overline n}\) Rising Factorial in terms of Falling Factorial of Negative

$\blacksquare$


Sources