Sum over k of m Choose k by k minus m over 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \sum_{k \mathop = 0}^n \binom m k \paren {k - \dfrac m 2} = -\dfrac m 2 \binom {m - 1} n$

where $\dbinom m k$ etc. are binomial coefficients.


Proof

\(\ds \sum_{k \mathop = 0}^n \binom m k \paren {k - \dfrac m 2}\) \(=\) \(\ds \sum_{k \mathop = 0}^n k \binom m k - \dfrac m 2 \sum_{k \mathop = 0}^n \binom m k\)
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^n m \binom {m - 1} {k - 1} - \dfrac m 2 \sum_{k \mathop = 0}^n \binom m k\) Factors of Binomial Coefficient
\(\ds \) \(=\) \(\ds \dfrac m 2 \sum_{k \mathop = 0}^n \paren {2 \binom {m - 1} {k - 1} - \binom m k}\)
\(\ds \) \(=\) \(\ds \dfrac m 2 \sum_{k \mathop = 0}^n \paren {2 \binom {m - 1} {k - 1} - \paren {\binom {m - 1} {k - 1} + \binom {m - 1} k} }\) Pascal's Rule
\(\ds \) \(=\) \(\ds \dfrac m 2 \sum_{k \mathop = 0}^n \paren {\binom {m - 1} {k - 1} - \binom {m - 1} k}\) simplifying
\(\ds \) \(=\) \(\ds \dfrac m 2 \paren {\binom {m - 1} {-1} - \binom {m - 1} n}\) as the series telescopes
\(\ds \) \(=\) \(\ds -\dfrac m 2 \binom {m - 1} n\) Definition of Binomial Coefficient for negative lower index

$\blacksquare$


Sources