Sum over k of n+k Choose m+2k by 2k Choose k by -1^k over k+1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $m, n \in \Z_{\ge 0}$.


Then:

$\ds \sum_k \binom {n + k} {m + 2 k} \binom {2 k} k \frac {\paren {-1}^k} {k + 1} = \binom {n - 1} {m - 1}$

where $\dbinom {n + k} {m + 2 k}$ and so on are binomial coefficients.


Proof 1

From Sum over $k$ of $\dbinom {r - k} m \dbinom {s + k} n$:

$\ds \sum_{k \mathop = 0}^r \binom {r - k} m \binom {s + k} n = \binom {r + s + 1} {m + n + 1}$


Setting $r = n + k - 1$, $m = 2 k$, $s = 0$, $n = m - 1$ and using $j$ as the index variable, this gives us:

$\ds \sum_{j \mathop = 0}^{n + k - 1} \binom {n + k - 1 - j} {2 k} \binom j {m - 1} = \dbinom {n + k} {m + 2 k}$


This leads to:

$\ds \sum_k \binom {n + k} {m + 2 k} \binom {2 k} k \frac {\paren {-1}^k} {k + 1} = \sum_k \sum_{j \mathop = 0}^{n + k - 1} \binom {n + k - 1 - j} {2 k} \binom {2 k} k \binom j {m - 1} \frac {\paren {-1} } {k + 1}$


Note that the terms of the above are $0$ when $n \le j < n + k - 1$.

This means that $k \ge 1$.

So:

$0 \le n + k - 1 - j \le k - i < 2 k$

Thus the first binomial coefficient in the above will vanish.

The condition on the second summation can then be replaced by $0 \le j < n$.

After exchange of summation and application of Sum over $k$ of $\dbinom {n + k} {2 k} \dbinom {2 k} k \dfrac {-1^k} {k + 1}$ converts it into:

$\ds \sum_{0 \mathop \le j \mathop < n} \binom j {m - 1} \delta_{\paren {n \mathop - 1} \mathop j}$

where $\delta_{\paren {n \mathop - 1} \mathop j}$ denotes the Kronecker delta.

All terms are therefore $0$ except where $j = n - 1$.

Hence the result.

$\blacksquare$


Proof 2

Let:

$\ds S := \sum_k \binom {n + k} {m + 2 k} \binom {2 k} k \frac {\paren {-1}^k} {k + 1}$

Then:

\(\ds \binom {2 k + 1} {k + 1}\) \(=\) \(\ds \binom {2 k} k \frac {2 k + 1} {k + 1}\) Factors of Binomial Coefficient
\(\ds \leadsto \ \ \) \(\ds \binom {2 k} k\) \(=\) \(\ds \binom {2 k + 1} {k + 1} \frac {k + 1} {2 k + 1}\)
\(\ds \) \(=\) \(\ds \binom {2 k + 1} k \frac {k + 1} {2 k + 1}\) Symmetry Rule for Binomial Coefficients


Also:

\(\ds \binom {n + k} {m + 2 k}\) \(=\) \(\ds \paren {-1}^{n + k - m - 2 k} \binom {-\paren {m + 2 k + 1} } {n + k - m - 2 k}\) Moving Top Index to Bottom in Binomial Coefficient
\(\ds \) \(=\) \(\ds \paren {-1}^{n - m - k} \binom {- m - 2 k - 1} {n - m - k}\)


Reassembling $S$:

$\ds S = \sum_k \binom {1 + 2 k} k \binom {-m - 2 k - 1} {n - m - k} \frac {\paren {-1}^{n - m} } {1 + 2 k}$


Recall Sum over $k$ of $\dbinom {r - t k} k$ by $\dbinom {s - t \paren {n - k} } {n - k}$ by $\dfrac r {r - t k}$:

$\ds \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t \paren {n - k} } {n - k} \frac r {r - t k} = \binom {r + s - t n} n$

Making the following substitutions:

$r \gets 1$
$t \gets -2$
$n \gets n - m$

we obtain:

\(\ds s + 2 \paren {n - m - k}\) \(=\) \(\ds - m - 2 k - 1\)
\(\ds \leadsto \ \ \) \(\ds s\) \(=\) \(\ds m - 2 n - 1\)
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop \ge 0} \binom {r - t k} k \binom {s - t \paren {n - k} } {n - k} \frac r {r - t k}\) \(=\) \(\ds \sum_{k \mathop \ge 0} \binom {1 + 2 k} k \binom {- m - 2 k - 1} {n - m - k} \frac 1 {1 + 2 k}\)


Thus:

\(\ds S\) \(=\) \(\ds \paren {-1}^{n - m} \sum_k \binom {1 + 2 k} k \binom {- m - 2 k - 1} {n - m - k} \frac 1 {1 + 2 k}\)
\(\ds \) \(=\) \(\ds \paren {-1}^{n - m} \binom {1 + \paren {m - 2 n - 1} + 2 \paren {n - m} } {n - m}\)
\(\ds \) \(=\) \(\ds \paren {-1}^{n - m} \binom {- m} {n - m}\)
\(\ds \) \(=\) \(\ds \binom {n - 1} {n - m}\) Negated Upper Index of Binomial Coefficient
\(\ds \) \(=\) \(\ds \binom {n - 1} {m - 1}\) Symmetry Rule for Binomial Coefficients

$\blacksquare$