Sum over k of r Choose k by Minus r Choose m Minus 2k

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $r \in \R$, $m \in \Z$.

$\ds \sum_{k \mathop \in \Z} \binom r k \binom {-r} {m - 2 k} \paren {-1}^{m + k} = \binom r m$


Proof

We have:

\(\ds \paren {1 - x^2}\) \(=\) \(\ds \paren {1 - x} \paren {1 + x}\) Difference of Two Squares
\(\ds \leadsto \ \ \) \(\ds \paren {1 - x}^r\) \(=\) \(\ds \dfrac {\paren {1 - x^2}^r} {\paren {1 + x}^r}\)
\(\ds \) \(=\) \(\ds \paren {1 - x^2}^r \paren {1 + x}^{-r}\)


Thus we have:

\(\ds \sum_{m \mathop \in \Z} \binom r m x^m\) \(=\) \(\ds \paren {1 - x}^r\) Binomial Theorem
\(\ds \) \(=\) \(\ds \paren {1 - x^2}^r \paren {1 + x}^{-r}\)
\(\ds \) \(=\) \(\ds \sum_{k \mathop \in \Z} \binom r k \paren {-x^2}^k \sum_{j \mathop \in \Z} \binom {-r} j x^j\)

Comparing the coefficients of $x^m$ on both sides yields the result.

$\blacksquare$


Sources