Sum over k to n of k Choose m by kth Harmonic Number

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \sum_{k \mathop = 1}^n \binom k m H_k = \binom {n + 1} {m + 1} \paren {H_{n + 1} - \frac 1 {m + 1} }$

where:

$\dbinom k m$ denotes a binomial coefficient
$H_k$ denotes the $k$th harmonic number.


Proof

First we note that by Pascal's Rule:

$\dbinom k m = \dbinom {k + 1} {m + 1} - \dbinom k {m + 1}$

Thus:

\(\ds \dbinom k m H_k\) \(=\) \(\ds \dbinom {k + 1} {m + 1} \paren {H_{k + 1} - \dfrac 1 {k + 1} } - \dbinom k {m + 1} H_k\)
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 1}^n \binom k m H_k\) \(=\) \(\ds \paren {\binom 2 {m + 1} H_2 - \binom 1 {m + 1} H_1}\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \cdots\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \paren {\binom {n + 1} {m + 1} H_{n + 1} - \binom n {m + 1} H_n}\)
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \sum_{k \mathop = 1}^n \binom {k + 1} {m + 1} \frac 1 {k + 1}\)
\(\ds \) \(=\) \(\ds \binom {n + 1} {m + 1} H_{n + 1} - \binom 1 {m + 1} H_1 - \frac 1 {m + 1} \sum_{k \mathop = 0}^n \binom k m + \frac 1 {m + 1} \binom 0 m\)
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 1}^n \binom k m H_k\) \(=\) \(\ds \binom {n + 1} {m + 1} \paren {H_{n + 1} - \frac 1 {m + 1} }\) Sum of Binomial Coefficients over Upper Index

$\blacksquare$


Sources