Summation of Products of n Numbers taken m at a time with Repetitions/Recurrence Formula

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a, b \in \Z$ be integers such that $b \ge a$.

Let $U$ be a set of $n = b - a + 1$ numbers $\set {x_a, x_{a + 1}, \ldots, x_b}$.

Let $m \in \Z_{>0}$ be a (strictly) positive integer.


Let:

\(\ds h_m\) \(=\) \(\ds \sum_{a \mathop \le j_1 \mathop \le \mathop \cdots \mathop \le j_m \mathop \le b} \paren {\prod_{k \mathop = 1}^m x_{j_k} }\)
\(\ds \) \(=\) \(\ds \sum_{a \mathop \le j_1 \mathop \le \mathop \cdots \mathop \le j_m \mathop \le b} x_{j_1} \cdots x_{j_m}\)


That is, $h_m$ is the product of all $m$-tuples of elements of $U$ taken $m$ at a time.


For $r \in \Z_{> 0}$, let:

$\ds S_r = \sum_{k \mathop = a}^b {x_k}^r$


A recurrence relation for $h_n$ can be given as:

\(\ds h_n\) \(=\) \(\ds \sum_{k \mathop = 1}^n \dfrac {S_k h_{n - k} } n\)
\(\ds \) \(=\) \(\ds \dfrac 1 n \paren {S_1 h_{n - 1} + S_2 h_{n - 2} + \cdots S_n h_0}\)

for $n \ge 1$.


Proof

\(\ds \map \ln {\map G z}\) \(=\) \(\ds \sum_{k \mathop \ge 1} \dfrac {S_k z^k} k\) Summation of Products of n Numbers taken m at a time with Repetitions: Lemma 2
\(\ds \leadsto \ \ \) \(\ds \map {\dfrac \d {\d z} } {\map \ln {\map G z} }\) \(=\) \(\ds \map {\dfrac \d {\d z} } {\sum_{k \mathop \ge 1} \dfrac {S_k z^k} k}\)
\(\ds \leadsto \ \ \) \(\ds \dfrac 1 {\map G z} \map {\dfrac \d {\d z} } {\map G z}\) \(=\) \(\ds \sum_{k \mathop \ge 1} \map {\dfrac \d {\d z} } {\dfrac {S_k z^k} k}\) Derivative of Logarithm Function, Chain Rule for Derivatives
\(\ds \leadsto \ \ \) \(\ds \dfrac 1 {\sum_{m \mathop \ge 0} h_m z^m} \sum_{m \mathop \ge 0} \paren {m + 1} h_{m + 1} z^m\) \(=\) \(\ds \sum_{k \mathop \ge 1} S_k z^{k - 1}\) Derivative of Generating Function, Power Rule for Derivatives
\(\ds \leadsto \ \ \) \(\ds \sum_{m \mathop \ge 0} \paren {m + 1} h_{m + 1} z^m\) \(=\) \(\ds \sum_{k \mathop \ge 1} S_k z^{k - 1} \sum_{m \mathop \ge 0} h_m z^m\)




Sources