Supremum Metric on Bounded Real Functions on Closed Interval is Metric
Theorem
Let $\closedint a b \subseteq \R$ be a closed real interval.
Let $A$ be the set of all bounded real functions $f: \closedint a b \to \R$.
Let $d: A \times A \to \R$ be the supremum metric on $A$.
Then $d$ is a metric.
Proof 1
The interval is an instance of a set.
Hence Supremum Metric on Bounded Real-Valued Functions is Metric can be directly applied.
Proof 2
We have that the supremum metric on $A \times A$ is defined as:
- $\ds \forall f, g \in A: \map d {f, g} := \sup_{x \mathop \in \closedint a b} \size {\map f x - \map g x}$
where $f$ and $g$ are bounded real functions.
So:
- $\exists K, L \in \R: \size {\map f x} \le K, \size {\map g x} \le L$
for all $x \in \closedint a b$.
First note that we have:
\(\ds \size {\map f x - \map g x}\) | \(=\) | \(\ds \size {\map f x + \paren {-\map g x} }\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \size {\map f x} + \size {\paren {-\map g x} }\) | Triangle Inequality for Real Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {\map f x} + \size {\map g x}\) | Definition of Absolute Value | |||||||||||
\(\ds \) | \(\le\) | \(\ds K + L\) |
and so the right hand side exists.
Proof of Metric Space Axiom $(\text M 1)$
\(\ds \map d {f, f}\) | \(=\) | \(\ds \sup_{x \mathop \in \closedint a b} \size {\map f x - \map f x}\) | Definition of $d$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sup_{x \mathop \in \closedint a b} \size 0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
So Metric Space Axiom $(\text M 1)$ holds for $d$.
$\Box$
Proof of Metric Space Axiom $(\text M 2)$
Let $f, g, h \in A$.
Let $c \in \closedint a b$.
\(\ds c\) | \(\in\) | \(\ds \closedint a b\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {\map f c - \map h c}\) | \(\le\) | \(\ds \size {\map f c - \map g c} + \size {\map g c - \map h c}\) | Triangle Inequality for Real Numbers | ||||||||||
\(\ds \) | \(\le\) | \(\ds \sup_{x \mathop \in \closedint a b} \size {\map f c - \map g c} + \sup_{x \mathop \in \closedint a b} \size {\map g c - \map h c}\) | Definition of Supremum of Real-Valued Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \map d {f, g} + \map d {g, h}\) | Definition of $d$ |
Thus $\map d {f, g} + \map d {g, h}$ is an upper bound for:
- $S := \set {\size {\map f c - \map h c}: c \in \closedint a b}$
So:
- $\map d {f, g} + \map d {g, h} \ge \sup S = \map d {f, h}$
So Metric Space Axiom $(\text M 2)$ holds for $d$.
$\Box$
Proof of Metric Space Axiom $(\text M 3)$
\(\ds \map d {f, g}\) | \(=\) | \(\ds \sup_{x \mathop \in \closedint a b} \size {\map f x - \map g x}\) | Definition of $d$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sup_{x \mathop \in \closedint a b} \size {\map g x - \map f x}\) | Definition of Absolute Value | |||||||||||
\(\ds \) | \(=\) | \(\ds \map d {g, f}\) | Definition of $d$ |
So Metric Space Axiom $(\text M 3)$ holds for $d$.
$\Box$
Proof of Metric Space Axiom $(\text M 4)$
As $d$ is the supremum of the absolute value of the image of the pointwise sum of $f$ and $g$:
- $\forall f, g \in A: \map d {f, g} \ge 0$
Suppose $f, g \in A: \map d {f, g} = 0$.
Then:
\(\ds \map d {f, g}\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sup_{x \mathop \in \closedint a b} \size {\map f x - \map g x}\) | \(=\) | \(\ds 0\) | Definition of $d$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \forall x \in \closedint a b: \, \) | \(\ds \map f x\) | \(=\) | \(\ds \map g x\) | Definition of Absolute Value | |||||||||
\(\ds \leadsto \ \ \) | \(\ds f\) | \(=\) | \(\ds g\) | Equality of Mappings |
So Metric Space Axiom $(\text M 4)$ holds for $d$.
$\blacksquare$
Sources
- 1975: Bert Mendelson: Introduction to Topology (3rd ed.) ... (previous) ... (next): Chapter $2$: Metric Spaces: $\S 2$: Metric Spaces: Exercise $5$