From ProofWiki
Jump to navigation Jump to search

Previous  ... Next


The $3$rd letter of the Greek alphabet.

Minuscule: $\gamma$
Majuscule: $\Gamma$

The $\LaTeX$ code for \(\gamma\) is \gamma .

The $\LaTeX$ code for \(\Gamma\) is \Gamma .

Gamma Function

$\map \Gamma z$

The gamma function $\Gamma: \C \setminus \Z_{\le 0} \to \C$ is defined, for the open right half-plane, as:

$\ds \map \Gamma z = \map {\MM \set {e^{-t} } } z = \int_0^{\to \infty} t^{z - 1} e^{-t} \rd t$

where $\MM$ is the Mellin transform.

For all other values of $z$ except the non-positive integers, $\map \Gamma z$ is defined as:

$\map \Gamma {z + 1} = z \map \Gamma z$

The $\LaTeX$ code for \(\map \Gamma z\) is \map \Gamma z .

Euler-Mascheroni Constant


The Euler-Mascheroni constant $\gamma$ is the real number that is defined as:

\(\ds \gamma\) \(:=\) \(\ds \lim_{n \mathop \to +\infty} \paren {\sum_{k \mathop = 1}^n \frac 1 k - \int_1^n \frac 1 x \rd x}\)
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to +\infty} \paren {H_n - \ln n}\)

where $\sequence {H_n}$ are the harmonic numbers and $\ln$ is the natural logarithm.



Let $S$ be a stochastic process giving rise to a time series $T$.

The autocovariance of $S$ at lag $k$ is defined as:

$\gamma_k := \cov {z_t, z_{t + k} } = \expect {\paren {z_t - \mu} \paren {z_{t + k} - \mu} }$


$z_t$ is the observation at time $t$
$\mu$ is the mean of $S$
$\expect \cdot$ is the expectation.

Universal Gravitational Constant


Some sources use $\gamma$ to denote the universal gravitational constant:

$\mathbf F_{a b} = \dfrac {\gamma m_a m_b {\mathbf r_{b a} } } {r^3}$


$\mathbf F_{a b}$ is the force exerted on $b$ by the gravitational force on $a$
$\mathbf r_{b a}$ is the displacement vector from $b$ to $a$
$r$ is the distance between $a$ and $b$
$\gamma$ is the universal gravitational constant.

Previous  ... Next