Symbols:R

From ProofWiki
Jump to navigation Jump to search

Previous  ... Next

Radius

$r$

Used to denote a general radius.


The $\LaTeX$ code for \(r\) is r .


Relation

$\RR$

Used to denote a general relation.


The $\LaTeX$ code for \(\RR\) is \RR .


Set of Real Numbers

$\R$

The set of real numbers.


The $\LaTeX$ code for \(\R\) is \R  or \mathbb R or \Bbb R.


Set of Non-Zero Real Numbers

$\R_{\ne 0}$

The set of non-zero real numbers:

$\R_{\ne 0} = \R \setminus \set 0$


The $\LaTeX$ code for \(\R_{\ne 0}\) is \R_{\ne 0}  or \mathbb R_{\ne 0} or \Bbb R_{\ne 0}.


Set of Non-Negative Real Numbers

$\R_{\ge 0}$

The set of non-negative real numbers:

$\R_{\ge 0} = \set {x \in \R: x \ge 0}$


The $\LaTeX$ code for \(\R_{\ge 0}\) is \R_{\ge 0}  or \mathbb R_{\ge 0} or \Bbb R_{\ge 0}.


Set of Strictly Positive Real Numbers

$\R_{> 0}$

The set of strictly positive real numbers:

$\R_{> 0} = \set {x \in \R: x > 0}$


The $\LaTeX$ code for \(\R_{> 0}\) is \R_{> 0}  or \mathbb R_{> 0} or \Bbb R_{> 0}.


Extended Real Number Line

$\overline \R$

The extended set of real numbers:

$\overline \R = \R \cup \set {+\infty, -\infty}$


The $\LaTeX$ code for \(\overline \R\) is \overline \R .


Real Euclidean Space

$\R^n$

Let $\R^n$ be an $n$-dimensional real vector space.

Let the Euclidean metric $d$ be applied to $\R^n$.

Then $\struct {\R^n, d}$ is a Euclidean $n$-space.


The $\LaTeX$ code for \(\R^n\) is \R^n .

The $\LaTeX$ code for \(\struct {\R^n, d}\) is \struct {\R^n, d} .


Radians

$\mathrm {rad}$

The symbol for the radian is $\mathrm {rad}$.


Its $\LaTeX$ code is \mathrm {rad .}


Real Part

$\map \Re z$ or $\map {\mathrm {Re} } z$

The real part of a complex number $z$.


The $\LaTeX$ code for \(\map \Re z\) is \map \Re z .

The $\LaTeX$ code for \(\map {\mathrm {Re} } z\) is \map {\mathrm {Re} } z .


Right Ascension

$\mathrm {RA}$

Used as an abbreviation and to denote the right ascension. Definition:Right Ascension


The $\LaTeX$ code for \(\mathrm {RA}\) is \mathrm {RA} .


Previous  ... Next