Symmetric Difference is Subset of Union of Symmetric Differences

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $R, S, T$ be sets.


Then:

$R \symdif S \subseteq \paren {R \symdif T} \cup \paren {S \symdif T}$

where $R \symdif S$ denotes the symmetric difference between $R$ and $S$.


Proof

From the definition of symmetric difference, we have:

$R \symdif S = \paren {R \setminus S} \cup \paren {S \setminus R}$


Then from Set Difference is Subset of Union of Differences, we have:

$R \setminus S \subseteq \paren {R \setminus T} \cup \paren {T \setminus S}$
$S \setminus R \subseteq \paren {S \setminus T} \cup \paren {T \setminus R}$

Thus:

\(\ds \paren {R \setminus S} \cup \paren {S \setminus R}\) \(\subseteq\) \(\ds \paren {R \setminus T} \cup \paren {T \setminus S} \cup \paren {S \setminus T} \cup \paren {T \setminus R}\) Set Union Preserves Subsets
\(\ds \) \(=\) \(\ds \paren {R \setminus T} \cup \paren {T \setminus R} \cup \paren {S \setminus T} \cup \paren {T \setminus S}\) Union is Commutative
\(\ds \) \(=\) \(\ds \paren {R \symdif T} \cup \paren {S \symdif T}\) Definition of Symmetric Difference

$\blacksquare$