Symmetric Group on 3 Letters/Subgroups
Jump to navigation
Jump to search
Subgroups of the Symmetric Group on $3$ Letters
Let $S_3$ denote the Symmetric Group on $3$ Letters, whose Cayley table is given as:
- $\begin{array}{c|cccccc} \circ & e & (123) & (132) & (23) & (13) & (12) \\ \hline e & e & (123) & (132) & (23) & (13) & (12) \\ (123) & (123) & (132) & e & (13) & (12) & (23) \\ (132) & (132) & e & (123) & (12) & (23) & (13) \\ (23) & (23) & (12) & (13) & e & (132) & (123) \\ (13) & (13) & (23) & (12) & (123) & e & (132) \\ (12) & (12) & (13) & (23) & (132) & (123) & e \\ \end{array}$
The subsets of $S_3$ which form subgroups of $S_3$ are:
\(\ds \) | \(\) | \(\ds S_3\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set e\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {e, \tuple {123}, \tuple {132} }\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {e, \tuple {12} }\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {e, \tuple {13} }\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {e, \tuple {23} }\) |
Examples
Non-Subgroup
Consider the subset $H$ of $S_3$:
- $H = \set {e, \tuple {12}, \tuple {13}, \tuple {23} }$
Then $H$ is not a subgroup of $S_3$.
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): $\S 5.2$. Subgroups: Example $93$
- 1967: John D. Dixon: Problems in Group Theory ... (previous) ... (next): $1$: Subgroups: Problem $1.1$
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $7$: Normal subgroups and quotient groups: Exercise $2$