Tangent of 67.5 Degrees

From ProofWiki
Jump to navigation Jump to search

Theorem

$\tan 67.5 \degrees = \tan \dfrac {3 \pi} 8 = \sqrt 2 + 1$

where $\tan$ denotes tangent.


Proof

\(\ds \tan 67.5 \degrees\) \(=\) \(\ds \map \tan {45 \degrees + 22.5 \degrees}\)
\(\ds \) \(=\) \(\ds \frac {\tan 45 \degrees + \tan 22.5 \degrees} {1 - \tan 45 \degrees \tan 22.5 \degrees}\) Tangent of Sum
\(\ds \) \(=\) \(\ds \frac {1 + \paren {\sqrt 2 - 1} } {1 - 1 \times \paren {\sqrt 2 - 1} }\) Tangent of $45 \degrees$ and Tangent of $22.5 \degrees$
\(\ds \) \(=\) \(\ds \frac {\sqrt 2} {2 - \sqrt 2}\) simplifying
\(\ds \) \(=\) \(\ds \frac {\sqrt 2 \paren {2 + \sqrt 2} } {\paren {2 - \sqrt 2} \paren {2 + \sqrt 2} }\) multiplying top and bottom by $2 + \sqrt 2$
\(\ds \) \(=\) \(\ds \frac {2 \sqrt 2 + 2} {4 - 2}\) Difference of Two Squares
\(\ds \) \(=\) \(\ds \sqrt 2 + 1\) simplifying

$\blacksquare$