Tangent of Complex Number/Formulation 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be real numbers.

Let $i$ be the imaginary unit.


Then:

$\tan \paren {a + b i} = \dfrac {\tan a + i \tanh b} {1 - i \tan a \tanh b}$

where:

$\tan$ denotes the tangent function (real and complex)
$\tanh$ denotes the hyperbolic tangent function.


Proof

\(\ds \tan \paren {a + b i}\) \(=\) \(\ds \dfrac {\sin a \cosh b + i \cos a \sinh b} {\cos a \cosh b - i \sin a \sinh b}\) Tangent of Complex Number: Formulation 1
\(\ds \) \(=\) \(\ds \dfrac {\tan a \cosh b + i \sinh b} {\cosh b - i \tan a \sinh b}\) multiplying denominator and numerator by $\dfrac 1 {\cos a}$
\(\ds \) \(=\) \(\ds \frac {\tan a + i \tanh b} {1 - i \tan a \tanh b}\) multiplying denominator and numerator by $\dfrac 1 {\cosh b}$

$\blacksquare$


Also see