Tangent of Complex Number/Formulation 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be real numbers.

Let $i$ be the imaginary unit.


Then:

$\tan \paren {a + b i} = \dfrac {\tan a - \tan a \tanh ^2 b} {1 + \tan ^2 a \tanh ^2 b} + \dfrac {\tanh b + \tan ^2 a \tanh b} {1 + \tan ^2 a \tanh ^2 b} i$

where:

$\tan$ denotes the tangent function (real and complex)
$\tanh$ denotes the hyperbolic tangent function.


Proof

\(\ds \tan \paren {a + b i}\) \(=\) \(\ds \frac {\tan a + i \tanh b} {1 - i \tan a \tanh b}\) Tangent of Complex Number: Formulation 2
\(\ds \) \(=\) \(\ds \frac {\paren {\tan a + i \tanh b} \paren {1 + i \tan a \tanh b} } {1 + \tan ^2 a \tanh ^2 b}\) multiplying denominator and numerator by $1 + i \tan a \tanh b$
\(\ds \) \(=\) \(\ds \frac {\tan a + i \tanh b + i \tan ^2 a \tanh b - \tan a \tanh ^2 b} {1 + \tan ^2 a \tanh ^2 b}\)
\(\ds \) \(=\) \(\ds \frac {\tan a - \tan a \tanh ^2 b} {1 + \tan ^2 a \tanh ^2 b} + \frac {\tanh b + \tan ^2 a \tanh b} {1 + \tan ^2 a \tanh ^2 b} i\)

$\blacksquare$


Also see