Tangent of Sum of Three Angles/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \tan {A + B + C} = \dfrac {\tan A + \tan B + \tan C - \tan A \tan B \tan C} {1 - \tan B \tan C - \tan C \tan A - \tan A \tan B}$


Proof

\(\ds \map \sin {A + B + C}\) \(=\) \(\ds \sin A \cos B \cos C + \cos A \sin B \cos C + \cos A \cos B \sin C - \sin A \sin B \sin C\) Sine of Sum of Three Angles
\(\ds \map \cos {A + B + C}\) \(=\) \(\ds \cos A \cos B \cos C - \sin A \sin B \cos C - \sin A \cos B \sin C - \cos A \sin B \sin C\) Cosine of Sum of Three Angles
\(\ds \leadsto \ \ \) \(\ds \map \tan {A + B + C}\) \(=\) \(\ds \dfrac {\sin A \cos B \cos C + \cos A \sin B \cos C + \cos A \cos B \sin C - \sin A \sin B \sin C} {\cos A \cos B \cos C - \sin A \sin B \cos C - \sin A \cos B \sin C - \cos A \sin B \sin C}\) Tangent is Sine divided by Cosine
\(\ds \) \(=\) \(\ds \dfrac {\frac {\sin A \cos B \cos C} {\cos A \cos B \cos C} + \frac {\cos A \sin B \cos C} {\cos A \cos B \cos C} + \frac {\cos A \cos B \sin C} {\cos A \cos B \cos C} - \frac {\sin A \sin B \sin C} {\cos A \cos B \cos C} } {\frac {\cos A \cos B \cos C} {\cos A \cos B \cos C} - \frac {\sin A \sin B \cos C} {\cos A \cos B \cos C} - \frac {\sin A \cos B \sin C} {\cos A \cos B \cos C} - \frac {\cos A \sin B \sin C} {\cos A \cos B \cos C} }\) dividing numerator and denominator by $\cos A \cos B \cos C$
\(\ds \) \(=\) \(\ds \dfrac {\tan A + \tan B + \tan C - \tan A \tan B \tan C} {1 - \tan B \tan C - \tan C \tan A - \tan A \tan B}\) Tangent is Sine divided by Cosine and simplifying

$\blacksquare$