Tangent times Tangent plus Cotangent

From ProofWiki
Jump to navigation Jump to search

Theorem

$\tan x \paren {\tan x + \cot x} = \sec^2 x$

where $\tan$, $\cot$ and $\sec$ denote tangent, cotangent and secant respectively.


Proof 1

\(\ds \tan x \left({\tan x + \cot x}\right)\) \(=\) \(\ds \tan x \sec x \csc x\) Sum of Tangent and Cotangent
\(\ds \) \(=\) \(\ds \frac {\sin x} {\cos x} \sec x \csc x\) Tangent is Sine divided by Cosine
\(\ds \) \(=\) \(\ds \frac {\sin x} {\cos^2 x} \csc x\) Secant is Reciprocal of Cosine
\(\ds \) \(=\) \(\ds \frac {\sin x} {\cos^2 x \sin x}\) Cosecant is Reciprocal of Sine
\(\ds \) \(=\) \(\ds \frac 1 {\cos^2 x}\)
\(\ds \) \(=\) \(\ds \sec^2 x\) Secant is Reciprocal of Cosine

$\blacksquare$


Proof 2

\(\ds \tan x \paren {\tan x + \cot x}\) \(=\) \(\ds \frac {\sin x} {\cos x} \paren {\frac {\sin x} {\cos x} + \frac {\cos x} {\sin x} }\) Definition of Tangent Function and Definition of Cotangent
\(\ds \) \(=\) \(\ds \frac {\sin x} {\cos x} \paren {\frac {\sin^2 x + \cos^2 x} {\cos x \sin x} }\)
\(\ds \) \(=\) \(\ds \frac {\sin x} {\cos x} \paren {\frac 1 {\cos x \sin x} }\) Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \frac 1 {\cos^2 x}\)
\(\ds \) \(=\) \(\ds \sec^2 x\) Definition of Secant Function

$\blacksquare$