Taxicab Metric is Metric

From ProofWiki
Jump to navigation Jump to search

Theorem

The taxicab metric is a metric.


Proof 1

From the definition, the taxicab metric is as follows:

Let $M_{1'} = \struct {A_{1'}, d_{1'} }, M_{2'} = \struct {A_{2'}, d_{2'} }, \ldots, M_{n'} = \struct {A_{n'}, d_{n'} }$ be a finite number of metric spaces.

Let $\AA$ be the Cartesian product $\ds \prod_{i \mathop = 1}^n A_{i'}$.

The taxicab metric on $\AA$ is:

$\ds \map {d_1} {x, y} = \sum_{i \mathop = 1}^n \map {d_{i'} } {x_{i'}, y_{i'} }$

for $x = \tuple {x_1, x_2, \ldots, x_n}, y = \tuple {y_1, y_2, \ldots, y_n} \in \AA$.


Proof of Metric Space Axiom $(\text M 1)$

\(\ds \map {d_1} {x, x}\) \(=\) \(\ds \sum_{i \mathop = 1}^n \map {d_{i'} } {x_{i'}, x_{i'} }\) Definition of $d_1$
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n 0\) as $d_{i'}$ fulfills Metric Space Axiom $(\text M 1)$
\(\ds \) \(=\) \(\ds 0\)

So Metric Space Axiom $(\text M 1)$ holds for $d_1$.

$\Box$


Proof of Metric Space Axiom $(\text M 2)$: Triangle Inequality

\(\ds \map {d_1} {x, y} + \map {d_1} {y, z}\) \(=\) \(\ds \sum_{i \mathop = 1}^n \map {d_{i'} } {x_{i'}, y_{i'} } + \sum_{i \mathop = 1}^n \map {d_{i'} } {y_{i'}, z_{i'} }\) Definition of $d_1$
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \paren {\map {d_{i'} } {x_{i'}, y_{i'} } + \map {d_{i'} } {y_{i'}, z_{i'} } }\)
\(\ds \) \(\ge\) \(\ds \sum_{i \mathop = 1}^n \map {d_{i'} } {x_{i'}, z_{i'} }\) as $d_{i'}$ fulfills Metric Space Axiom $(\text M 2)$: Triangle Inequality
\(\ds \) \(=\) \(\ds \map {d_1} {x, z}\) Definition of $d_1$

So Metric Space Axiom $(\text M 2)$: Triangle Inequality holds for $d_1$.

$\Box$


Proof of Metric Space Axiom $(\text M 3)$

\(\ds \map {d_1} {x, y}\) \(=\) \(\ds \sum_{i \mathop = 1}^n \map {d_{i'} } {x_{i'}, y_{i'} }\) Definition of $d_1$
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \map {d_{i'} } {y_{i'}, x_{i'} }\) as $d_{i'}$ fulfills Metric Space Axiom $(\text M 3)$
\(\ds \) \(=\) \(\ds \map {d_1} {y, x}\) Definition of $d_1$

So Metric Space Axiom $(\text M 3)$ holds for $d_1$.

$\Box$


Proof of Metric Space Axiom $(\text M 4)$

\(\ds x\) \(\ne\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds \exists i \in \set {1, 2, \ldots, n}: \, \) \(\ds x_i\) \(\ne\) \(\ds y_i\)
\(\ds \leadsto \ \ \) \(\ds \map {d_{i'} } {x_{i'}, y_{i'} }\) \(>\) \(\ds 0\) as $d_{i'}$ fulfills Metric Space Axiom $(\text M 4)$
\(\ds \leadsto \ \ \) \(\ds \sum_{i \mathop = 1}^n \map {d_{i'} } {x_{i'}, y_{i'} }\) \(>\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \map {d_1} {x, y}\) \(>\) \(\ds 0\) Definition of $d_1$

So Metric Space Axiom $(\text M 4)$ holds for $d_1$.

$\blacksquare$


Proof 2

Follows directly from P-Product Metric is Metric, where in this case $p = 1$.

$\blacksquare$


Sources