Topology induced by Scaled Euclidean Metric on Positive Integers is Discrete

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\Z_{>0}$ be the set of (strictly) positive integers.

Let $\delta: \Z_{>0} \times \Z_{>0} \to \R$ be the metric on $\Z_{>0}$ defined as:

$\forall x, y \in \Z_{>0}: \map \delta {x, y} = \dfrac {\size {x - y} } {x y}$


Then the metric topology for $\delta$ is a discrete topology.


Proof

Let $\tau_\delta$ denote the metric topology for $\delta$.

In Scaled Euclidean Metric is Metric it is demonstrated that $\delta$ is indeed a metric on $\Z_{>0}$.


Let $a \in \Z_{>0}$.

Recall the definition of the open $\epsilon$-ball of $a$ in $\struct {\Z_{>0}, \delta}$:

$\map {B_\epsilon} a := \set {x \in A: \map \delta {x, a} < \epsilon}$

Let $x \in \R_{>0}$.

Let $\epsilon \in \R_{>0}$ such that $\epsilon < \dfrac 1 {a \paren {a + 1} }$.

But we have:

\(\ds \forall x \in \Z_{>0}, x \ne a: \, \) \(\ds \map \delta {x, a}\) \(=\) \(\ds \frac {\size {x - a} } {x a}\)
\(\ds \) \(=\) \(\ds \size {\frac 1 x - \frac 1 a}\)
\(\ds \) \(\ge\) \(\ds \size {\frac 1 {a + 1} - \frac 1 a}\)
\(\ds \) \(=\) \(\ds \epsilon\)

and so:

$\forall x \in \Z_{>0}, x \ne a: x \notin \map {B_\epsilon} a$

It follows that:

$\map {B_\epsilon} a := \set a$

Thus by definition of $\tau_d$:

$\forall a \in \Z_{>0}: \set a \in \tau_\delta$

It follows from Basis for Discrete Topology that $\struct {\Z_{>0}, \tau_\delta}$ is a discrete topological space.

$\blacksquare$


Sources